RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      신경망에 기반한 개인화 기술 = A Personalization Technology Based on Neural Networks

      한글로보기

      https://www.riss.kr/link?id=A82315688

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      국문 초록 (Abstract)

      현 인터넷상에서 취향에 맞는 항목(상품) 정보를 사용자에게 추천해 주는 개인화 기술은 대부분 특정 사용자와 유사한 선호도를 갖는 다른 사용자들의 특정 항목에 대한 선호도를 바탕으로 항목의 선호도를 추정하는 협력적 추천 기술을 적용하고 있다. 그 중 최근접 이웃 방법은 적용하기가 용이한 반면 항목간의 가중치를 고려하지 못함으로써 추천의 정확도가 크게 떨어지는 문제점이 있다. 연관규칙 방법은 다른 항목에 대한 선호도 자료로부터 데이터 마이닝 기법을 적용하여 항목 선호에 대한 연관규칙을 추출하고 그 규칙을 사용하여 어떤 항목의 선호도를 추정한다. 따라서 항목들 간의 중요도가 연관규칙의 지지도나 신뢰도 등으로 나타난다고 할 수 있으나, 단순히 항목들간의 연관관계 즉 표면적인 연관관계에 의하여 선호도를 결정함으로써 항목들간의 어떤 내용적인 공통적 또는 어떤 상위개념에 의한 선호도가 고려되지 않음으로써 역시 정확도가 떨어지는 문제점이 있다. 본 논문에서는 추천의 정확도를 향상시키기 위한 신경망 추천 방법에 대해 분석하고, 내용기반 추천과 협력적 추천을 병합한 신경망 추천 방법을 제안한다. 또한, 다른 협력적 추천 방법과의 비교를 통하여 본 추천 방법의 장점과 성능의 우수함을 보인다.
      번역하기

      현 인터넷상에서 취향에 맞는 항목(상품) 정보를 사용자에게 추천해 주는 개인화 기술은 대부분 특정 사용자와 유사한 선호도를 갖는 다른 사용자들의 특정 항목에 대한 선호도를 바탕으로 ...

      현 인터넷상에서 취향에 맞는 항목(상품) 정보를 사용자에게 추천해 주는 개인화 기술은 대부분 특정 사용자와 유사한 선호도를 갖는 다른 사용자들의 특정 항목에 대한 선호도를 바탕으로 항목의 선호도를 추정하는 협력적 추천 기술을 적용하고 있다. 그 중 최근접 이웃 방법은 적용하기가 용이한 반면 항목간의 가중치를 고려하지 못함으로써 추천의 정확도가 크게 떨어지는 문제점이 있다. 연관규칙 방법은 다른 항목에 대한 선호도 자료로부터 데이터 마이닝 기법을 적용하여 항목 선호에 대한 연관규칙을 추출하고 그 규칙을 사용하여 어떤 항목의 선호도를 추정한다. 따라서 항목들 간의 중요도가 연관규칙의 지지도나 신뢰도 등으로 나타난다고 할 수 있으나, 단순히 항목들간의 연관관계 즉 표면적인 연관관계에 의하여 선호도를 결정함으로써 항목들간의 어떤 내용적인 공통적 또는 어떤 상위개념에 의한 선호도가 고려되지 않음으로써 역시 정확도가 떨어지는 문제점이 있다. 본 논문에서는 추천의 정확도를 향상시키기 위한 신경망 추천 방법에 대해 분석하고, 내용기반 추천과 협력적 추천을 병합한 신경망 추천 방법을 제안한다. 또한, 다른 협력적 추천 방법과의 비교를 통하여 본 추천 방법의 장점과 성능의 우수함을 보인다.

      더보기

      목차 (Table of Contents)

      • 요약
      • 1. 서론
      • 2. 관련연구
      • 3. 신경망 추천 모델
      • 4. 실험 및 결과
      • 요약
      • 1. 서론
      • 2. 관련연구
      • 3. 신경망 추천 모델
      • 4. 실험 및 결과
      • 5. 결론 및 향후 연구
      • 6. 참고문헌
      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼