RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      DeLone과 McLean의 정보시스템 성공 모형을 통한 추천시스템 성공 요인 재구성 = Reconfiguration of Recommender System Success with DeLone and McLean`s Model of IS Success

      한글로보기

      https://www.riss.kr/link?id=A82565782

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Recommender system is a core component of e-commerce. Correspondingly, metrics to evaluate the system performance have been developed and applied. However, even though we have lots of applications that have tried to adopt recommender systems, the dearth of successfully installed recommender systems for more than a decade leads us to a skeptical thinking that current metrics do not sufficiently indicate the recommender system success in business viability point of view. Hence, the purpose of this paper is to reconfigure measures for recommender system success. Adopting DeLone and McLean`s amended model of information system success as the underlying framework, content analysis with intellectual properties on recommender systems was conducted to modify the currently used metrics. Then a model of recommender system success is proposed based on the newly identified metrics are compared with traditional metrics.
      번역하기

      Recommender system is a core component of e-commerce. Correspondingly, metrics to evaluate the system performance have been developed and applied. However, even though we have lots of applications that have tried to adopt recommender systems, the dear...

      Recommender system is a core component of e-commerce. Correspondingly, metrics to evaluate the system performance have been developed and applied. However, even though we have lots of applications that have tried to adopt recommender systems, the dearth of successfully installed recommender systems for more than a decade leads us to a skeptical thinking that current metrics do not sufficiently indicate the recommender system success in business viability point of view. Hence, the purpose of this paper is to reconfigure measures for recommender system success. Adopting DeLone and McLean`s amended model of information system success as the underlying framework, content analysis with intellectual properties on recommender systems was conducted to modify the currently used metrics. Then a model of recommender system success is proposed based on the newly identified metrics are compared with traditional metrics.

      더보기

      참고문헌 (Reference)

      1 Pierrakos, D., "Web usage mining as a tool for personalization: a survey" 13 (13): 311-372, 2003

      2 Goldberg, D., "Using collaborative filtering to weave an information tapestry" 35 (35): 61-70, 1992

      3 Davis, F.D., "User acceptance of computer technology: A comparison of two models" 35 (35): 982-1001, 1989

      4 Tam, K.Y., "Understanding the impact of web personalization on user information processing and decision outcome" 30 (30): 865-890, 2006

      5 권오병, "Ubi-SERVQUAL을 활용한 시나리오상의 유비쿼터스 서비스 품질 평가" 한국경영과학회 32 (32): 1-13, 2007

      6 Ricci, F., "Travel Recommender Systems" 17 (17): 55-57, 2002

      7 Adomavicius, G., "Toward the Next Generation of Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions" 17 (17): 734-749, 2005

      8 Komiak, S.Y.X., "The effects of personalization and familiarity on trust and adoption of recommendation agents" 30 (30): 941-960, 2006

      9 DeLone, W.H., "The DeLone and McLean Model of Information Systems Success: A Ten-year Update" 19 (19): 9-30, 2003

      10 Schafer, J.B., "Recommender Systems in E-Commerce" 158-166, 1999

      1 Pierrakos, D., "Web usage mining as a tool for personalization: a survey" 13 (13): 311-372, 2003

      2 Goldberg, D., "Using collaborative filtering to weave an information tapestry" 35 (35): 61-70, 1992

      3 Davis, F.D., "User acceptance of computer technology: A comparison of two models" 35 (35): 982-1001, 1989

      4 Tam, K.Y., "Understanding the impact of web personalization on user information processing and decision outcome" 30 (30): 865-890, 2006

      5 권오병, "Ubi-SERVQUAL을 활용한 시나리오상의 유비쿼터스 서비스 품질 평가" 한국경영과학회 32 (32): 1-13, 2007

      6 Ricci, F., "Travel Recommender Systems" 17 (17): 55-57, 2002

      7 Adomavicius, G., "Toward the Next Generation of Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions" 17 (17): 734-749, 2005

      8 Komiak, S.Y.X., "The effects of personalization and familiarity on trust and adoption of recommendation agents" 30 (30): 941-960, 2006

      9 DeLone, W.H., "The DeLone and McLean Model of Information Systems Success: A Ten-year Update" 19 (19): 9-30, 2003

      10 Schafer, J.B., "Recommender Systems in E-Commerce" 158-166, 1999

      11 Resnick, P., "Recommender Systems" 40 (40): 56-58, 1997

      12 Wang, W., "Recommendation agents for electronic commerce: effects of explanation facilities on trusting beliefs" 23 (23): 217-246, 2007

      13 Liang, T., "Personalized content recommendation and user satisfaction: theoretical synthesis and empirical findings" 23 (23): 45-70, 2007

      14 Baeza-Yates, R., "Modern information retrieval" Addison Wesley 1999

      15 Schein, A.I., "Methods and metrics for cold-start recommendations" 253-260, 2002

      16 Jiang, J.J., "Measuring Information System Service Quality: SERVQUAL from the Other Side" 26 (26): 145-166, 2002

      17 Melamed, D., "MarCol: A Market-Based Recommender System" 22 (22): 74-78, 2007

      18 Ardissono, L., "Intrigue: Personalized Recommendation of Tourist Attractions for Desktop and Handset Devices" 17 (17): 687-714, 2003

      19 DeLone, W.H., "Information system success: The quest for the dependent variable" 3 (3): 60-95, 1992

      20 Lee M.C., "Factors influencing the adoption of Internet banking: An in tegration of TAM and TPB with perceived risk and perceived benefit" 8 (8): 130-141, 2009

      21 Olmo, F.H., "Evaluation of recommender systems: A new approach" 35 (35): 790-784, 2008

      22 Herlocker, J.L., "Evaluating collaborative filtering recommender systems" 22 (22): 5-53, 2004

      23 Goldberg, K., "Eigentaste: a constant time collaborative filtering algorithm" 4 (4): 133-151, 2001

      24 DeLone, W.H., "Determinants of Success For Small Business Computer Systems" UCLA 1983

      25 Zeithaml, V. A., "Delivering Quality Service: Balancing Customer Perceptions and Expectations" Free Press 1990

      26 Rafter, R., "Conversational collaborative recommendation an experimental analysis" 24 (24): 301-318, 2005

      27 van Setten, M., "Context-Aware Recommendations in the Mobile Tourist Application COMPASS" 235-244, 2004

      28 Mooney, R. J., "Content-based book recommending using learning for text categorization" 195-204, 2000

      29 Zanker, M., "Comparing Recommendation Strategies in a Commercial Context" 22 (22): 69-73, 2007

      30 O’Mahony, M., "Collaborative Recommendation: A Robustness Analysis" 4 (4): 344-377, 2004

      31 Zanker, M., "Case-studies on exploiting explicit customer requirements in recommender systems" 19 (19): 133-166, 2009

      32 Zolt, C., "Business model design and the performance of entrepreneurial firms" 18 (18): 181-334, 2007

      33 Sheng, Z., "Building Trustworthy Recommender Systems" Dartmouth College 2007

      34 Mobasher, B., "Attacks and Remedies in Collaborative Recommend" 22 (22): 56-63, 2007

      35 Hurley, N.J., "Attacking Recommender Systems: A Cost-Benefit Analysis" 22 (22): 64-68, 2007

      36 Ho, S.Y., "An empirical examination of the effects of web personalization at different stages of decision making" 19 (19): 95-112, 2005

      37 Linden, G., "Amazon.com Recommendations: Item-to-Item Collaborative Filtering" 7 (7): 76-80, 2003

      38 Komiak, S.Y.X., "A two-process view of trust and distrust building in recommendation agents: a process-tracing study" 9 (9): 727-747, 2008

      39 Seddon, P.B., "A respecification and extension of the DeLone and McLean model of IS success" 8 (8): 240-254, 1997

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2026 평가예정 재인증평가 신청대상 (재인증)
      2020-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2017-01-01 평가 등재학술지 유지 (계속평가) KCI등재
      2016-10-04 학술지명변경 외국어명 : The Knowledge Management Society of Korea -> Knowledge Management Review KCI등재
      2014-10-10 학회명변경 영문명 : 미등록 -> The Knowledge Management Society of Korea KCI등재
      2013-01-01 평가 등재 1차 FAIL (등재유지) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2007-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2006-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2005-03-21 학술지등록 한글명 : 지식경영연구
      외국어명 : The Knowledge Management Society of Korea
      KCI등재후보
      2004-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 1.47 1.47 1.48
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      1.4 1.28 2.047 0.3
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼