RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      Bacillus clausii I-52의 Chromosomal Integration에 의한 Alkaline Protease의 생산성 향상 = Increased Production of an Alkaline Protease from Bacillus clausii I-52 by Chromosomal Integration

      한글로보기

      https://www.riss.kr/link?id=A104724708

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      To increase productivity of a strong extracellular alkaline protease (BCAP), stable strains of Bacillus clausii I-52 carrying another copy of BCAP gene in the chromosome were developed. Integrative vector, pHPS9-fuBCAP carrying BCAP promoter, ribosome binding site, signal sequence and active protease gene was constructed and transferred into B. clausii I-52, and integration of the constructed plasmid into chromosome was identified by PCR. An investigation was carried out on BCAP production by B. clausii I-52 and transformant C5 showing the highest relative activity of alkaline protease using submerged fermentation. Maximum enzyme activity was produced when cells were grown under the submerged fermentation conditions at 37℃ for 48 h with an aeration rate of 1 vvm and agitation rate of 650 rpm in a optimized medium (soybean meal 2%, wheat flour 1%, sodium citrate 0.5%, K2HPO4 0.4%, Na2HPO4 0.1%, NaCl 0.4%, MgSO47H2O 0.01%, FeSO47H2O 0.05%, liquid maltose 2.5%, Na2CO3 0.6%). A protease yield of approximately 134,670 U/ml was achieved using an optimized media, which show an increase of approximately 1.6-fold compared to that of non-transformant (83,960 U/ml). When the stability of transformant C5 was examined, the integrated plasmid pHPS9-fuBCAP was detected in the transformant after cultivation for 8 days, suggesting that it maintained stably in the chromosomal DNA of transformant C5.
      번역하기

      To increase productivity of a strong extracellular alkaline protease (BCAP), stable strains of Bacillus clausii I-52 carrying another copy of BCAP gene in the chromosome were developed. Integrative vector, pHPS9-fuBCAP carrying BCAP promoter, ribosome...

      To increase productivity of a strong extracellular alkaline protease (BCAP), stable strains of Bacillus clausii I-52 carrying another copy of BCAP gene in the chromosome were developed. Integrative vector, pHPS9-fuBCAP carrying BCAP promoter, ribosome binding site, signal sequence and active protease gene was constructed and transferred into B. clausii I-52, and integration of the constructed plasmid into chromosome was identified by PCR. An investigation was carried out on BCAP production by B. clausii I-52 and transformant C5 showing the highest relative activity of alkaline protease using submerged fermentation. Maximum enzyme activity was produced when cells were grown under the submerged fermentation conditions at 37℃ for 48 h with an aeration rate of 1 vvm and agitation rate of 650 rpm in a optimized medium (soybean meal 2%, wheat flour 1%, sodium citrate 0.5%, K2HPO4 0.4%, Na2HPO4 0.1%, NaCl 0.4%, MgSO47H2O 0.01%, FeSO47H2O 0.05%, liquid maltose 2.5%, Na2CO3 0.6%). A protease yield of approximately 134,670 U/ml was achieved using an optimized media, which show an increase of approximately 1.6-fold compared to that of non-transformant (83,960 U/ml). When the stability of transformant C5 was examined, the integrated plasmid pHPS9-fuBCAP was detected in the transformant after cultivation for 8 days, suggesting that it maintained stably in the chromosomal DNA of transformant C5.

      더보기

      국문 초록 (Abstract)

      인천 연안 갯벌에서 분리한 호알카리성 Bacillus clausii I-52로부터 세포외 알카리성 단백질 분해효소 (BCAP)의 발현 및 생산성을 증가시키기 위하여 BCAP promoter, ribosome 결합 서열, 신호서열, 전구체 서열 및 활성형 BCAP 유전자를 cloning한 재조합 plasmid pHPS9-fuBCAP을 penicillin-protoplast 법으로 B. clausii I-52의 염색체 DNA에 integration 하였고, 도입된 plasmid pHPS9-fuBCAP 유전자는 PCR에 의해 확인하였다. 가장 높은 단백질 분해효소 상대 활성을 보이는 선별된 transformant C5를 생산 최적화 배지(대두박 2%, 밀가루 1%, 구연산나트륨 0.5%, K2HPO4 0.4%, Na2HPO4 0.1%, NaCl 0.4%, MgSO47H2O 0.01%, FeSO47H2O 0.05%, 물엿 2.5%, 탄산나트륨 0.6%)에서 액침 배양법(배양온도, 37℃; 배양 시간, 48 h; 교반 속도, 650 rpm; 통기 속도, 1 vvm)으로 배양하여 단백질 분해효소를 발현 및 분비시켰을 때, BCAP 발현 양(134,670 U/ml)은 wild-type(83,960 U/ml)에 비하여 약 1.6 배 증가하였으며, 비활성도(91,611.5 U/mg 단백질)는 wild-type(71,760 U/mg 단백질)에 비하여 약 1.3 배 증가하였다. 또한, B. clausii I-52 염색체 DNA에 integration된 pHPS9-fuBCAP plasmid는 단백질 발현과 함께 8일간의 계대배양 동안에 안정하게 유지되고 있음을 확인하였다.
      번역하기

      인천 연안 갯벌에서 분리한 호알카리성 Bacillus clausii I-52로부터 세포외 알카리성 단백질 분해효소 (BCAP)의 발현 및 생산성을 증가시키기 위하여 BCAP promoter, ribosome 결합 서열, 신호서열, 전구...

      인천 연안 갯벌에서 분리한 호알카리성 Bacillus clausii I-52로부터 세포외 알카리성 단백질 분해효소 (BCAP)의 발현 및 생산성을 증가시키기 위하여 BCAP promoter, ribosome 결합 서열, 신호서열, 전구체 서열 및 활성형 BCAP 유전자를 cloning한 재조합 plasmid pHPS9-fuBCAP을 penicillin-protoplast 법으로 B. clausii I-52의 염색체 DNA에 integration 하였고, 도입된 plasmid pHPS9-fuBCAP 유전자는 PCR에 의해 확인하였다. 가장 높은 단백질 분해효소 상대 활성을 보이는 선별된 transformant C5를 생산 최적화 배지(대두박 2%, 밀가루 1%, 구연산나트륨 0.5%, K2HPO4 0.4%, Na2HPO4 0.1%, NaCl 0.4%, MgSO47H2O 0.01%, FeSO47H2O 0.05%, 물엿 2.5%, 탄산나트륨 0.6%)에서 액침 배양법(배양온도, 37℃; 배양 시간, 48 h; 교반 속도, 650 rpm; 통기 속도, 1 vvm)으로 배양하여 단백질 분해효소를 발현 및 분비시켰을 때, BCAP 발현 양(134,670 U/ml)은 wild-type(83,960 U/ml)에 비하여 약 1.6 배 증가하였으며, 비활성도(91,611.5 U/mg 단백질)는 wild-type(71,760 U/mg 단백질)에 비하여 약 1.3 배 증가하였다. 또한, B. clausii I-52 염색체 DNA에 integration된 pHPS9-fuBCAP plasmid는 단백질 발현과 함께 8일간의 계대배양 동안에 안정하게 유지되고 있음을 확인하였다.

      더보기

      참고문헌 (Reference)

      1 Mallonee, D, "Transformation of Bacillus polymyxa with plasmid DNA" 55 : 2517-2521, 1989

      2 Banerjee, U. C, "Thermostable alkaline protease from Bacillus brevis and its characterization as a laundry detergent additive" 35 : 213-219, 1999

      3 Gessesse, A, "The use of nug meal as low-cost substrate for the production of alkaline protease by the alkaliphilic Bacillus sp. AR-009 and some properties of the enzyme" 62 : 59-61, 1997

      4 Joo, H. S, "Stabilization method of an alkaline protease from inactivation by heat, SDS and hydrogen peroxide" 36 : 766-772, 2005

      5 Harington, A, "Stability during fermentation of a recombinant α-amylase plasmid in Bacillus subtilis" 27 : 521-527, 1988

      6 Bron, S, "Segregational instability of pUB110 derived recombinants in Bacillus subtilis" 14 : 234-244, 1985

      7 Bryan, P. N, "Protein engineering of subtilisin" 1543 : 203-222, 2000

      8 Joo, H.S, "Production of protease from a new alkalophilic Bacilus sp. I-312 grown on soybean meal: optimization and some properties" 40 : 1263-1270, 2005

      9 장정순, "Production of an oxidant and SDS-stable alkaline protease from an alkaophilic Bacillus clausii I-52 by submerged fermentation: Feasibility as a laundry detergent additive" ELSEVIER SCIENCE INC 38 : 176-183, 200601

      10 Manachini, P. L, "Production in sea-water of thermostable alkaline proteases by a halotolerant strain of Bacillus licheniformis" 20 : 565-568, 1998

      1 Mallonee, D, "Transformation of Bacillus polymyxa with plasmid DNA" 55 : 2517-2521, 1989

      2 Banerjee, U. C, "Thermostable alkaline protease from Bacillus brevis and its characterization as a laundry detergent additive" 35 : 213-219, 1999

      3 Gessesse, A, "The use of nug meal as low-cost substrate for the production of alkaline protease by the alkaliphilic Bacillus sp. AR-009 and some properties of the enzyme" 62 : 59-61, 1997

      4 Joo, H. S, "Stabilization method of an alkaline protease from inactivation by heat, SDS and hydrogen peroxide" 36 : 766-772, 2005

      5 Harington, A, "Stability during fermentation of a recombinant α-amylase plasmid in Bacillus subtilis" 27 : 521-527, 1988

      6 Bron, S, "Segregational instability of pUB110 derived recombinants in Bacillus subtilis" 14 : 234-244, 1985

      7 Bryan, P. N, "Protein engineering of subtilisin" 1543 : 203-222, 2000

      8 Joo, H.S, "Production of protease from a new alkalophilic Bacilus sp. I-312 grown on soybean meal: optimization and some properties" 40 : 1263-1270, 2005

      9 장정순, "Production of an oxidant and SDS-stable alkaline protease from an alkaophilic Bacillus clausii I-52 by submerged fermentation: Feasibility as a laundry detergent additive" ELSEVIER SCIENCE INC 38 : 176-183, 200601

      10 Manachini, P. L, "Production in sea-water of thermostable alkaline proteases by a halotolerant strain of Bacillus licheniformis" 20 : 565-568, 1998

      11 Yang, J. K, "Production and purification of protease from a Bacillus subtilis that can deproteinize crustacean wastes" 26 : 406-413, 2000

      12 Joo, H. S, "Oxidant and SDS-stable alkaline protease from a halo-tolerant Bacillus clausii I-52: enhanced production and simple purification" 98 : 491-497, 2005

      13 Joo, H. S, "Oxidant and SDS-stable alkaline protease from Bacillus clausii I-52: Production and some properties" 95 : 267-272, 2003

      14 Joo, H. S, "Optimization of the production of an extracellular alkaline protease from Bacillus horikoshii" 38 : 155-159, 2002

      15 Haima, P, "Novel plasmid marker rescue transformation system for molecular cloning in Bacillus subtilis enabling direct selection of recombinants" 223 : 185-191, 1990

      16 Kumar, C. G, "Novel alkaline serine proteases from alkalophilic Bacillus sp.: purification and characterization" 34 : 441-449, 1999

      17 Rao, M. B, "Molecular and biotechnological aspects of microbial proteases" 62 : 597-635, 1998

      18 Kumar, C. G, "Microbial alkaline proteases: From a bioindustrial viewpoint" 17 : 561-594, 1999

      19 Primrose, S. B, "Isolation of plasmid deletion mutants and study of their instability" 6 : 193-200, 1981

      20 Wang, J. J, "Increased production of Bacillus keratinase by chromosomal integration of multiple copies of the kerA gene" 87 : 460-464, 2004

      21 Lopez, P, "Generation of deletions in pneumococcal mal genes cloned in Bacillus" 81 : 5189-5193, 1984

      22 Young, M, "Gene amplification in Bacillus subtilis" 130 : 1913-1921, 1984

      23 Jacobs, M. F, "Expression of the subtilisin Carlsberg-encoding gene in Bacillus licheniformis and Bacillus subtilis" 152 : 67-74, 1995

      24 Lin, X, "Expression of the Bacillus licheniformis PWD-1 keratinase gene in B. subtilis" 19 : 134-138, 1997

      25 Jaouadi, B, "Enhancement of the thermostability and the catalytic efficiency of Bacillus pumilus CBS protease by site-directed mutagenesis" 92 : 360-369, 2010

      26 Estell, D. D, "Engineering an enzyme by site-directed mutagenesis to be resistant to chemical oxidation" 260 : 6518-6521, 1985

      27 Maurer, K. H, "Detergent proteases" 15 : 330-334, 2004

      28 Saeki, K, "Detergent alkaline proteases: enzymatic properties, genes, and crystal structures" 103 : 501-508, 2007

      29 van der Laan, J. C, "Cloning, characterization, and multiple chromosomal integration of a Bacillus alkaline protease gene" 57 : 901-909, 1991

      30 Laemmli, U. K, "Cleavage of structural proteins during the assembly of the head of bacteriophage T4" 22 : 680-685, 1970

      31 Rao, C. S, "Characterization of thermo- and detergent stable serine protease from isolated Bacillus circulans and evaluation of eco-friendly applications" 44 : 262-268, 2009

      32 Gupta, R, "Bleach-stable alkaline protease from Bacillus sp" 21 : 135-138, 1999

      33 Joo, H. S, "Bleach-resistant alkaline protease produced by a Bacillus sp. isolated from the Korean polychaeta, Periserrula leucophryna" 38 : 1441-1447, 2004

      34 Jaouadi, B, "Biochemical and molecular characterization of a detergent-stable serine alkaline protease from Bacillus pumilus CBS with high catalytic efficiency" 90 : 1291-1305, 2008

      35 주한승, "Bacillus clausii I-52로부터 alkaline protease 유전자의 클로닝 및 발현" 농업생명과학연구원 45 (45): 201-212, 2011

      36 Gupta, R, "An overview on fermentation, downstream processing and properties of microbial alkaline proteases" 60 : 381-395, 2002

      37 Albertini, A. M, "Amplification of chromosomal region in Bacillus subtilis" 163 : 1203-1211, 1985

      38 Karr-Lilienthal, L. K, "Amino acid, carbohydrate, and fat composition of soybean meals prepared at 55 commercial U.S. soybean processing plants" 53 : 2146-2150, 2005

      39 Horikoshii, K, "Alkalophiles: Some applications of their products for biotechnology" 63 : 735-750, 1999

      40 Ito, S, "Alkaline detergent enzymes from alkaliphiles: enzymatic properties, genetics, and structures" 2 : 185-190, 1998

      41 Bradford, M. M, "A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding" 72 : 248-254, 1976

      42 Saeki, K, "A novel species of alkalophilic Bacillus that produces an oxidatively stable alkaline serine protease" 6 : 65-72, 2002

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2028 평가예정 재인증평가 신청대상 (재인증)
      2022-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2019-01-01 평가 등재학술지 유지 (계속평가) KCI등재
      2016-01-01 평가 등재학술지 유지 (계속평가) KCI등재
      2012-06-29 학술지명변경 외국어명 : 미등록 -> Journal of Agriculture & Life Science KCI등재
      2012-04-13 학회명변경 영문명 : Institute of Agriculture & Life Scienes Gyeongsang National University -> Institute of Agriculture & Life Science, Gyeongsang National University KCI등재
      2012-01-01 평가 등재 1차 FAIL (등재유지) KCI등재
      2009-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2008-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2006-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.37 0.37 0.35
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.37 0.37 0.581 0.07
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼