RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCOPUS KCI등재

      운전 조건에 따른 고분자 전해질형 연료전지의 전지 성능 = Cell Performances of Proton Exchange Membrane Fuel Cell as to Operation Conditions

      한글로보기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      The performance of proton exchange membrane fuel cell was investigated to optimize the fabrication method of membrane/electrode assembly, and to find appropriate operating conditions such as pressure, temperature and inlet gas humidification. It is the membrane electrolyte that has decisive effect on the cell performance. The optimum condition for humidification could be found by varying the inlet gas temperatures. Gas temperature 5℃ for oxygen and l0℃ for hydrogen higher than that of cell temperature was found to the optimum humidification condition irrespective of the cell temperature. Increase in temperature and/or pressure generally resulted in enhanced cell performance. The cell performance operated at 1 atm, however, exhibited an interesting temperature dependence. Enhanced performance with increasing temperature was observed up to 70℃, whereas cell temperature showed no appreciable effect on the cell performance above 70℃. This observation might be attributed to the increased vapor pressure, with increasing temperature, which dilutes inlet gas composition. Cells operated at higher pressure did not show this behavior where the effect of increased vapor pressure becomes relatively insignificant.
      번역하기

      The performance of proton exchange membrane fuel cell was investigated to optimize the fabrication method of membrane/electrode assembly, and to find appropriate operating conditions such as pressure, temperature and inlet gas humidification. It is th...

      The performance of proton exchange membrane fuel cell was investigated to optimize the fabrication method of membrane/electrode assembly, and to find appropriate operating conditions such as pressure, temperature and inlet gas humidification. It is the membrane electrolyte that has decisive effect on the cell performance. The optimum condition for humidification could be found by varying the inlet gas temperatures. Gas temperature 5℃ for oxygen and l0℃ for hydrogen higher than that of cell temperature was found to the optimum humidification condition irrespective of the cell temperature. Increase in temperature and/or pressure generally resulted in enhanced cell performance. The cell performance operated at 1 atm, however, exhibited an interesting temperature dependence. Enhanced performance with increasing temperature was observed up to 70℃, whereas cell temperature showed no appreciable effect on the cell performance above 70℃. This observation might be attributed to the increased vapor pressure, with increasing temperature, which dilutes inlet gas composition. Cells operated at higher pressure did not show this behavior where the effect of increased vapor pressure becomes relatively insignificant.

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼