RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      노이즈가 포함된 포화증기표의 신경회로망 모델링 = Modelling of the noise-added saturated steam table using neural networks

      한글로보기

      https://www.riss.kr/link?id=A101326566

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      국문 초록 (Abstract)

      증기표의 상태량들은 실험을 통하여 얻어진 값이거나 적절한 가정하에서 근사적으로 계산된 값이다. 따라서 증기표의 상태량들은 기본적으로 오차를 가지고 있다. 또한 이러한 상태량을 수치해석에서 사용하기 위하여는 함수 근사를 통하여 모델링하여야 한다. 본 연구에서는 포화증기표에 대해 난수를 적절한 크기로 조절한 다음 원래의 성질들에 더하여 인위적으로 노이즈가 포함된 데이터를 만들어 측정오차를 포함하는 상태량의 대용으로 사용했다. 이 데이터의 모델링에는 신경회로망과 2차 스플라인 보간법을 사용되었다. 해석 결과 양단에서는 스플라인 보간법이 신경회로망보다 훨씬 더 적은 상대오차를 보였으며, 양단을 제외하면 신경회로망은 대체로 ${\pm}0.2%$, 스플라인 보간법은 ${\pm}0.5$~1.5%의 오차를 보였다. 이것은 사용 범위에서는 신경회로망이 스플라인 보간법보다 훨씬 더 적은 상대오차를 가진다는 것을 의미한다. 이 결과로부터 신경회로망이 스플라인 보간법보다 원래의 값은 더 잘 추적할 수 있으며, 신경회로망이 포화증기표의 모델링에 더 적절한 방법이라는 사실을 확인하였다.
      번역하기

      증기표의 상태량들은 실험을 통하여 얻어진 값이거나 적절한 가정하에서 근사적으로 계산된 값이다. 따라서 증기표의 상태량들은 기본적으로 오차를 가지고 있다. 또한 이러한 상태량을 수...

      증기표의 상태량들은 실험을 통하여 얻어진 값이거나 적절한 가정하에서 근사적으로 계산된 값이다. 따라서 증기표의 상태량들은 기본적으로 오차를 가지고 있다. 또한 이러한 상태량을 수치해석에서 사용하기 위하여는 함수 근사를 통하여 모델링하여야 한다. 본 연구에서는 포화증기표에 대해 난수를 적절한 크기로 조절한 다음 원래의 성질들에 더하여 인위적으로 노이즈가 포함된 데이터를 만들어 측정오차를 포함하는 상태량의 대용으로 사용했다. 이 데이터의 모델링에는 신경회로망과 2차 스플라인 보간법을 사용되었다. 해석 결과 양단에서는 스플라인 보간법이 신경회로망보다 훨씬 더 적은 상대오차를 보였으며, 양단을 제외하면 신경회로망은 대체로 ${\pm}0.2%$, 스플라인 보간법은 ${\pm}0.5$~1.5%의 오차를 보였다. 이것은 사용 범위에서는 신경회로망이 스플라인 보간법보다 훨씬 더 적은 상대오차를 가진다는 것을 의미한다. 이 결과로부터 신경회로망이 스플라인 보간법보다 원래의 값은 더 잘 추적할 수 있으며, 신경회로망이 포화증기표의 모델링에 더 적절한 방법이라는 사실을 확인하였다.

      더보기

      다국어 초록 (Multilingual Abstract)

      The thermodynamic properties of steam table are obtained by measurement or approximate calculation under appropriate assumptions. Therefore they are supposed to have basic measurement errors. And thermodynamic properties should be modeled through function approximation for using in numerical analysis. In order to make noised thermodynamic properties corresponding to measurement errors, random numbers are generated, adjusted to appropriate magnitudes and added to original thermodynamic properties. Both neural networks and quadratic spline interpolation method are introduced for function approximation of these modified thermodynamic properties in the saturated water based on pressure and temperature. In analysis spline interpolation method gives much less relative errors than neural networks at both ends of data. Excluding the both ends of data, the relative errors of neural networks is generally within ${\pm}0.2%$ and those of spline interpolation method within ${\pm}0.5$~1.5%. This means that the neural networks give smaller relative errors compared with quadratic spline interpolation method within range of use. From this fact it was confirmed that the neural networks trace the original values better than the quadratic interpolation method and neural networks are more appropriate method in modelling the saturated steam table.
      번역하기

      The thermodynamic properties of steam table are obtained by measurement or approximate calculation under appropriate assumptions. Therefore they are supposed to have basic measurement errors. And thermodynamic properties should be modeled through func...

      The thermodynamic properties of steam table are obtained by measurement or approximate calculation under appropriate assumptions. Therefore they are supposed to have basic measurement errors. And thermodynamic properties should be modeled through function approximation for using in numerical analysis. In order to make noised thermodynamic properties corresponding to measurement errors, random numbers are generated, adjusted to appropriate magnitudes and added to original thermodynamic properties. Both neural networks and quadratic spline interpolation method are introduced for function approximation of these modified thermodynamic properties in the saturated water based on pressure and temperature. In analysis spline interpolation method gives much less relative errors than neural networks at both ends of data. Excluding the both ends of data, the relative errors of neural networks is generally within ${\pm}0.2%$ and those of spline interpolation method within ${\pm}0.5$~1.5%. This means that the neural networks give smaller relative errors compared with quadratic spline interpolation method within range of use. From this fact it was confirmed that the neural networks trace the original values better than the quadratic interpolation method and neural networks are more appropriate method in modelling the saturated steam table.

      더보기

      참고문헌 (Reference)

      1 박병규, "제습공조용 핀-관형 증발기의 열성능 모델링" 12 (12): 1020-1030, 2000

      2 송문석, "열역학" 건기원 2000

      3 이태환, "신경회로망을 이용한 증기표의 함수근사" 한국정보통신학회 10 (10): 459-466, 2006

      4 이태환, "신경회로망을 이용한 냉매의 물성 모델링" (13) : 287-293, 2006

      5 이태환, "신경회로망을 이용한 과열수증기의 모델링" (12) : 271-276, 2005

      6 이태환, "신경회로망을 사용한 넓은 온도 범위의 증기표 모델링" 한국정보통신학회 10 (10): 2008-2013, 2006

      7 이태환, "냉매회로와 유입공기온도가 증발기의 열성능에 미치는 영향" (8) : 72-79, 2001

      8 J. W. Hines, "MATLAB Supplement to Fuzzy and Neural Approaches in Engineering" John Wiley and Sons, Inc 1997

      9 Domanski, P. A., "EVSIM - An evaprator simulation model accounting for refrigerant and one dimensional air distribution" 1989

      1 박병규, "제습공조용 핀-관형 증발기의 열성능 모델링" 12 (12): 1020-1030, 2000

      2 송문석, "열역학" 건기원 2000

      3 이태환, "신경회로망을 이용한 증기표의 함수근사" 한국정보통신학회 10 (10): 459-466, 2006

      4 이태환, "신경회로망을 이용한 냉매의 물성 모델링" (13) : 287-293, 2006

      5 이태환, "신경회로망을 이용한 과열수증기의 모델링" (12) : 271-276, 2005

      6 이태환, "신경회로망을 사용한 넓은 온도 범위의 증기표 모델링" 한국정보통신학회 10 (10): 2008-2013, 2006

      7 이태환, "냉매회로와 유입공기온도가 증발기의 열성능에 미치는 영향" (8) : 72-79, 2001

      8 J. W. Hines, "MATLAB Supplement to Fuzzy and Neural Approaches in Engineering" John Wiley and Sons, Inc 1997

      9 Domanski, P. A., "EVSIM - An evaprator simulation model accounting for refrigerant and one dimensional air distribution" 1989

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2027 평가예정 재인증평가 신청대상 (재인증)
      2021-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2018-01-01 평가 등재학술지 선정 (계속평가) KCI등재
      2017-12-01 평가 등재후보로 하락 (계속평가) KCI등재후보
      2013-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2011-11-23 학술지명변경 외국어명 : THE JOURNAL OF The KOREAN Institute Of Maritime information & Communication Science -> Journal of the Korea Institute Of Information and Communication Engineering KCI등재
      2011-11-16 학회명변경 영문명 : International Journal of Information and Communication Engineering(IJICE) -> The Korea Institute of Information and Communication Engineering KCI등재
      2011-11-14 학회명변경 한글명 : 한국해양정보통신학회 -> 한국정보통신학회
      영문명 : 미등록 -> International Journal of Information and Communication Engineering(IJICE)
      KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2005-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2004-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2002-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.23 0.23 0.27
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.24 0.22 0.424 0.11
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼