RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      표층 구문 타입을 사용한 조건부 연산 모델의 일반화 LR 파서 = Generalized LR Parser with Conditional Action Model(CAM) using Surface Phrasal Type

      한글로보기

      https://www.riss.kr/link?id=A104295772

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Generalized LR parsing is one of the enhanced LR parsing methods so that it overcome the limit of one-way linear stack of the traditional LR parser using graph-structured stack, and it has been playing an important role of a firm starting point to generate other variations for NL parsing equipped with various mechanisms. In this paper, we propose a Conditional Action Model that can solve the problems of conventional probabilistic GLR methods. Previous probabilistic GLR parsers have used relatively limited contextual information for disambiguation due to the high complexity of internal GLR stack. Our proposed model uses Surface Phrasal Types representing the structural characteristics of the parse for its additional contextual information, so that more specified structural preferences can be reflected into the parser. Experimental results show that our GLR parser with the proposed Conditional Action Model outperforms the previous methods by about 6~7% without any lexical information, and our model can utilize the rich stack information for syntactic disambiguation of probabilistic LR parser.
      번역하기

      Generalized LR parsing is one of the enhanced LR parsing methods so that it overcome the limit of one-way linear stack of the traditional LR parser using graph-structured stack, and it has been playing an important role of a firm starting point to gen...

      Generalized LR parsing is one of the enhanced LR parsing methods so that it overcome the limit of one-way linear stack of the traditional LR parser using graph-structured stack, and it has been playing an important role of a firm starting point to generate other variations for NL parsing equipped with various mechanisms. In this paper, we propose a Conditional Action Model that can solve the problems of conventional probabilistic GLR methods. Previous probabilistic GLR parsers have used relatively limited contextual information for disambiguation due to the high complexity of internal GLR stack. Our proposed model uses Surface Phrasal Types representing the structural characteristics of the parse for its additional contextual information, so that more specified structural preferences can be reflected into the parser. Experimental results show that our GLR parser with the proposed Conditional Action Model outperforms the previous methods by about 6~7% without any lexical information, and our model can utilize the rich stack information for syntactic disambiguation of probabilistic LR parser.

      더보기

      국문 초록 (Abstract)

      일반화 LR(Generalized LR, 이하 GLR) 파싱은 선형 스택을 사용하는 전통적인 LR 파싱 방식의 한계를 극복하도록 만들어진 LR 파싱 기법의 하나로서, LR 기법에 여러 가지 매커니즘을 통합하여 자연어 파싱에 응용하는 작업의 토대가 되어 왔다. 본 논문에서는 기존의 확률적 LR 파싱 기법이 가지고 있는 문제를 개선한 조건부 연산 모델(Conditional Action Model)을 제안한다. 기존의 확률적 LR 파싱 기법은 그래프 구조 스택의 복잡성으로 인해 상대적으로 제한된 문맥 정보만을 사용하여 왔다. 제안된 모델은 부분 생성 파스의 표현을 위하여 표층 구문 타입(Surface Phrasal Type)을 사용하여 그래프 구조 스택에 들어 있는 구문 구조를 기술함으로써 좀 더 세분된 구조적 선호도를 파서에 반영시킬 수 있다. 실험 결과, 어휘를 고려하지 않고 학습한 조건부 연산 모델로 구현된 본 GLR 파서는 기존의 방식보다 약 6-7%의 정확도 향상을 보였으며, 본 모델을 통해 풍부한 스택 정보를 확률적 LR 파서의 구조적 중의성 해결에 효과적으로 사용할 수 있음을 보였다.
      번역하기

      일반화 LR(Generalized LR, 이하 GLR) 파싱은 선형 스택을 사용하는 전통적인 LR 파싱 방식의 한계를 극복하도록 만들어진 LR 파싱 기법의 하나로서, LR 기법에 여러 가지 매커니즘을 통합하여 자연...

      일반화 LR(Generalized LR, 이하 GLR) 파싱은 선형 스택을 사용하는 전통적인 LR 파싱 방식의 한계를 극복하도록 만들어진 LR 파싱 기법의 하나로서, LR 기법에 여러 가지 매커니즘을 통합하여 자연어 파싱에 응용하는 작업의 토대가 되어 왔다. 본 논문에서는 기존의 확률적 LR 파싱 기법이 가지고 있는 문제를 개선한 조건부 연산 모델(Conditional Action Model)을 제안한다. 기존의 확률적 LR 파싱 기법은 그래프 구조 스택의 복잡성으로 인해 상대적으로 제한된 문맥 정보만을 사용하여 왔다. 제안된 모델은 부분 생성 파스의 표현을 위하여 표층 구문 타입(Surface Phrasal Type)을 사용하여 그래프 구조 스택에 들어 있는 구문 구조를 기술함으로써 좀 더 세분된 구조적 선호도를 파서에 반영시킬 수 있다. 실험 결과, 어휘를 고려하지 않고 학습한 조건부 연산 모델로 구현된 본 GLR 파서는 기존의 방식보다 약 6-7%의 정확도 향상을 보였으며, 본 모델을 통해 풍부한 스택 정보를 확률적 LR 파서의 구조적 중의성 해결에 효과적으로 사용할 수 있음을 보였다.

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2014-09-01 평가 학술지 통합(기타)
      2013-04-26 학술지명변경 한글명 : 정보과학회논문지 : 소프트웨어 및 응용</br>외국어명 : Journal of KIISE : Software and Applications KCI등재
      2011-01-01 평가 등재학술지 유지(등재유지) KCI등재
      2009-01-01 평가 등재학술지 유지(등재유지) KCI등재
      2008-10-17 학술지명변경 한글명 : 정보과학회논문지 : 소프트웨어 및 응용</br>외국어명 : Journal of KISS : Software and Applications KCI등재
      2007-01-01 평가 등재학술지 유지(등재유지) KCI등재
      2005-01-01 평가 등재학술지 유지(등재유지) KCI등재
      2002-01-01 평가 등재학술지 선정(등재후보2차) KCI등재
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼