RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재후보

      Performance Improvement of Classifier by Combining Disjunctive Normal Form features

      한글로보기

      https://www.riss.kr/link?id=A105943945

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract) kakao i 다국어 번역

      This paper describes a visual object detection approach utilizing ensemble based machine learning.
      Object detection methods employing 1D features have the benefit of fast calculation speed. However, for real image with complex background, detection accuracy and performance are degraded. In this paper, we propose an ensemble learning algorithm that combines a 1D feature classifier and 2D DNF (Disjunctive Normal Form) classifier to improve the object detection performance in a single input image. Also, to improve the computing efficiency and accuracy, we propose a feature selecting method to reduce the computing time and ensemble algorithm by combining the 1D features and 2D DNF features. In the verification experiments, we selected the Haar-like feature as the 1D image descriptor, and demonstrated the performance of the algorithm on a few datasets such as face and vehicle.
      번역하기

      This paper describes a visual object detection approach utilizing ensemble based machine learning. Object detection methods employing 1D features have the benefit of fast calculation speed. However, for real image with complex background, detection ac...

      This paper describes a visual object detection approach utilizing ensemble based machine learning.
      Object detection methods employing 1D features have the benefit of fast calculation speed. However, for real image with complex background, detection accuracy and performance are degraded. In this paper, we propose an ensemble learning algorithm that combines a 1D feature classifier and 2D DNF (Disjunctive Normal Form) classifier to improve the object detection performance in a single input image. Also, to improve the computing efficiency and accuracy, we propose a feature selecting method to reduce the computing time and ensemble algorithm by combining the 1D features and 2D DNF features. In the verification experiments, we selected the Haar-like feature as the 1D image descriptor, and demonstrated the performance of the algorithm on a few datasets such as face and vehicle.

      더보기

      참고문헌 (Reference)

      1 Oscar Martinez Mozos, "Supervised Learning of Places from Range Data using Adaboost" 1730-1735, 2005

      2 Y. Bai, "Robust Tracking via Weakly Supervised Ranking SVM" 1854-1861, 2013

      3 Paul Viola, "Rapid Object Detection using a Boosted Cascade of Simple Features" 1 : I-511-I-518, 2001

      4 Robert T. Collins, "Online Selection of Discriminative Tracking Features" 27 (27): 1631-1643, 2005

      5 D. Wang, "Online Object Tracking with Sparse Prototypes" 22 (22): 314-325, 2013

      6 H. Grabner, "On-line boosting and vision" 1 : 260-267, 2006

      7 Pedro F. Felzenszwalb, "Object Detection with Discriminatively Trained Part-Based Models" 32 (32): 9-2010, 2010

      8 Timo Ojala, "Multiresolution Gray-Scale and Rotation Invariant Texture Classifiecation with Local Binary Patterns" 24 (24): 971-987, 2002

      9 Kobi Levi, "Learning Object Detection from a Small Number of Examples: the Importance of Good Features" 2 : II-53-II-60, 2004

      10 Takeshi Mita, "Joint Haar-like Features for Face Detection" 2 : 1619-1626, 2005

      1 Oscar Martinez Mozos, "Supervised Learning of Places from Range Data using Adaboost" 1730-1735, 2005

      2 Y. Bai, "Robust Tracking via Weakly Supervised Ranking SVM" 1854-1861, 2013

      3 Paul Viola, "Rapid Object Detection using a Boosted Cascade of Simple Features" 1 : I-511-I-518, 2001

      4 Robert T. Collins, "Online Selection of Discriminative Tracking Features" 27 (27): 1631-1643, 2005

      5 D. Wang, "Online Object Tracking with Sparse Prototypes" 22 (22): 314-325, 2013

      6 H. Grabner, "On-line boosting and vision" 1 : 260-267, 2006

      7 Pedro F. Felzenszwalb, "Object Detection with Discriminatively Trained Part-Based Models" 32 (32): 9-2010, 2010

      8 Timo Ojala, "Multiresolution Gray-Scale and Rotation Invariant Texture Classifiecation with Local Binary Patterns" 24 (24): 971-987, 2002

      9 Kobi Levi, "Learning Object Detection from a Small Number of Examples: the Importance of Good Features" 2 : II-53-II-60, 2004

      10 Takeshi Mita, "Joint Haar-like Features for Face Detection" 2 : 1619-1626, 2005

      11 VOQUANG NHAT, "Illumination Invariant Object Tracking with Adaptive Sparse Representation" 제어·로봇·시스템학회 12 (12): 195-201, 2014

      12 Rong Xiao, "Dynamic Cascades for Face Detection" 1-8, 2007

      13 Zhu Teng, "Disjunctive Normal Form of Weak Classifier for Online Learning based Object Tracking" 138-146, 2013

      14 Rainer Lienhart, "An Extended Set of Haar-like Features for Rapid Object Detection" 1 : I-900-I-903, 2002

      15 김동욱, "A Fast and Accurate Face Tracking Scheme by using Depth Information in Addition to Texture Information" 대한전기학회 9 (9): 707-720, 2014

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2022 평가예정 재인증평가 신청대상 (재인증)
      2019-01-01 평가 등재학술지 선정 (계속평가) KCI등재
      2018-01-01 평가 등재후보학술지 유지 (계속평가) KCI등재후보
      2017-01-01 평가 등재후보학술지 유지 (계속평가) KCI등재후보
      2015-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      2013-12-26 학회명변경 영문명 : The Institute of Webcasting, Internet and Telecommunication -> The Institute of Internet, Broadcasting and Communication
      2010-06-21 학회명변경 한글명 : 한국인터넷방송통신TV학회 -> 한국인터넷방송통신학회
      영문명 : Institute Of Webcasting, Internet Television And Telecommunication -> The Institute of Webcasting, Internet and Telecommunication
      2005-08-25 학회명변경 한글명 : 한국인터넷방송/TV학회 -> 한국인터넷방송통신TV학회
      영문명 : Institute Of Webcasting, Internet Television And Telecommunication -> Institute Of Webcasting, Internet Television And Telecommunication
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0 0 0
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0 0 0 0.13
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼