RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCI SCIE SCOPUS

      High-Performance Magnetorheological Suspensions of Pickering-Emulsion-Polymerized Polystyrene/Fe<sub>3</sub>O<sub>4</sub> Particles with Enhanced Stability

      한글로보기

      https://www.riss.kr/link?id=A107454034

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      <P>The magnetorheological (MR) performance of suspensions based on core–shell-structured foamed polystyrene (PSF)/Fe<SUB>3</SUB>O<SUB>4</SUB> particles was investigated by using a vibrating sample magnetometer and a rotational rheometer. Core–shell-structured polystyrene (PS)/Fe<SUB>3</SUB>O<SUB>4</SUB> was synthesized by using the Pickering-emulsion polymerization method in which Fe<SUB>3</SUB>O<SUB>4</SUB> nanoparticles were added as a solid surfactant. Foaming the PS core in PS/Fe<SUB>3</SUB>O<SUB>4</SUB> particles was carried out by using a supercritical carbon dioxide (scCO<SUB>2</SUB>) fluid. The density was measured by a pycnometer. The densities of PS/Fe<SUB>3</SUB>O<SUB>4</SUB> and PSF/Fe<SUB>3</SUB>O<SUB>4</SUB> particles were significantly lowered from that of the pure Fe<SUB>3</SUB>O<SUB>4</SUB> particle after Pickering-emulsion polymerization and foaming treatment. All tested suspensions displayed similar MR behaviors but different yield strengths. The important parameter that determined the MR performance was not the particle density but rather the surface density of Fe<SUB>3</SUB>O<SUB>4</SUB> on the PS core surface. The morphology was observed by scanning electron microscopy and transmission electron microscopy. Most Fe<SUB>3</SUB>O<SUB>4</SUB> particles stayed on the surface of PS/Fe<SUB>3</SUB>O<SUB>4</SUB> particles, making the surface topology bumpy and rough, which decreased the particle sedimentation velocity. Finally, Turbiscan apparatus was used to examine the sedimentation properties of different particle suspensions. The suspensions of PS/Fe<SUB>3</SUB>O<SUB>4</SUB> and PSF/Fe<SUB>3</SUB>O<SUB>4</SUB> showed remarkably improved stability against sedimentation, much better than the bare Fe<SUB>3</SUB>O<SUB>4</SUB> particle suspension because of the reduced density mismatch between the nanoparticles and the carrier medium as well as the surface topology change.</P><P><B>Graphic Abstract</B>
      <IMG SRC='http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/langd5/2018/langd5.2018.34.issue-8/acs.langmuir.7b04043/production/images/medium/la-2017-040436_0010.gif'></P>
      번역하기

      <P>The magnetorheological (MR) performance of suspensions based on core–shell-structured foamed polystyrene (PSF)/Fe<SUB>3</SUB>O<SUB>4</SUB> particles was investigated by using a vibrating sample magnetometer and a...

      <P>The magnetorheological (MR) performance of suspensions based on core–shell-structured foamed polystyrene (PSF)/Fe<SUB>3</SUB>O<SUB>4</SUB> particles was investigated by using a vibrating sample magnetometer and a rotational rheometer. Core–shell-structured polystyrene (PS)/Fe<SUB>3</SUB>O<SUB>4</SUB> was synthesized by using the Pickering-emulsion polymerization method in which Fe<SUB>3</SUB>O<SUB>4</SUB> nanoparticles were added as a solid surfactant. Foaming the PS core in PS/Fe<SUB>3</SUB>O<SUB>4</SUB> particles was carried out by using a supercritical carbon dioxide (scCO<SUB>2</SUB>) fluid. The density was measured by a pycnometer. The densities of PS/Fe<SUB>3</SUB>O<SUB>4</SUB> and PSF/Fe<SUB>3</SUB>O<SUB>4</SUB> particles were significantly lowered from that of the pure Fe<SUB>3</SUB>O<SUB>4</SUB> particle after Pickering-emulsion polymerization and foaming treatment. All tested suspensions displayed similar MR behaviors but different yield strengths. The important parameter that determined the MR performance was not the particle density but rather the surface density of Fe<SUB>3</SUB>O<SUB>4</SUB> on the PS core surface. The morphology was observed by scanning electron microscopy and transmission electron microscopy. Most Fe<SUB>3</SUB>O<SUB>4</SUB> particles stayed on the surface of PS/Fe<SUB>3</SUB>O<SUB>4</SUB> particles, making the surface topology bumpy and rough, which decreased the particle sedimentation velocity. Finally, Turbiscan apparatus was used to examine the sedimentation properties of different particle suspensions. The suspensions of PS/Fe<SUB>3</SUB>O<SUB>4</SUB> and PSF/Fe<SUB>3</SUB>O<SUB>4</SUB> showed remarkably improved stability against sedimentation, much better than the bare Fe<SUB>3</SUB>O<SUB>4</SUB> particle suspension because of the reduced density mismatch between the nanoparticles and the carrier medium as well as the surface topology change.</P><P><B>Graphic Abstract</B>
      <IMG SRC='http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/langd5/2018/langd5.2018.34.issue-8/acs.langmuir.7b04043/production/images/medium/la-2017-040436_0010.gif'></P>

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼