<P>The magnetorheological (MR) performance of suspensions based on core–shell-structured foamed polystyrene (PSF)/Fe<SUB>3</SUB>O<SUB>4</SUB> particles was investigated by using a vibrating sample magnetometer and a...
http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
https://www.riss.kr/link?id=A107454034
2018
-
SCI,SCIE,SCOPUS
학술저널
2807-2814(8쪽)
0
상세조회0
다운로드다국어 초록 (Multilingual Abstract)
<P>The magnetorheological (MR) performance of suspensions based on core–shell-structured foamed polystyrene (PSF)/Fe<SUB>3</SUB>O<SUB>4</SUB> particles was investigated by using a vibrating sample magnetometer and a...
<P>The magnetorheological (MR) performance of suspensions based on core–shell-structured foamed polystyrene (PSF)/Fe<SUB>3</SUB>O<SUB>4</SUB> particles was investigated by using a vibrating sample magnetometer and a rotational rheometer. Core–shell-structured polystyrene (PS)/Fe<SUB>3</SUB>O<SUB>4</SUB> was synthesized by using the Pickering-emulsion polymerization method in which Fe<SUB>3</SUB>O<SUB>4</SUB> nanoparticles were added as a solid surfactant. Foaming the PS core in PS/Fe<SUB>3</SUB>O<SUB>4</SUB> particles was carried out by using a supercritical carbon dioxide (scCO<SUB>2</SUB>) fluid. The density was measured by a pycnometer. The densities of PS/Fe<SUB>3</SUB>O<SUB>4</SUB> and PSF/Fe<SUB>3</SUB>O<SUB>4</SUB> particles were significantly lowered from that of the pure Fe<SUB>3</SUB>O<SUB>4</SUB> particle after Pickering-emulsion polymerization and foaming treatment. All tested suspensions displayed similar MR behaviors but different yield strengths. The important parameter that determined the MR performance was not the particle density but rather the surface density of Fe<SUB>3</SUB>O<SUB>4</SUB> on the PS core surface. The morphology was observed by scanning electron microscopy and transmission electron microscopy. Most Fe<SUB>3</SUB>O<SUB>4</SUB> particles stayed on the surface of PS/Fe<SUB>3</SUB>O<SUB>4</SUB> particles, making the surface topology bumpy and rough, which decreased the particle sedimentation velocity. Finally, Turbiscan apparatus was used to examine the sedimentation properties of different particle suspensions. The suspensions of PS/Fe<SUB>3</SUB>O<SUB>4</SUB> and PSF/Fe<SUB>3</SUB>O<SUB>4</SUB> showed remarkably improved stability against sedimentation, much better than the bare Fe<SUB>3</SUB>O<SUB>4</SUB> particle suspension because of the reduced density mismatch between the nanoparticles and the carrier medium as well as the surface topology change.</P><P><B>Graphic Abstract</B>
<IMG SRC='http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/langd5/2018/langd5.2018.34.issue-8/acs.langmuir.7b04043/production/images/medium/la-2017-040436_0010.gif'></P>