RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCOPUS

      사이드 스캔 소나 영상에서 수중물체 자동 탐지를 위한 컨볼루션 신경망 기법 적용 = The application of convolutional neural networks for automatic detection of underwater object in side scan sonar images

      한글로보기

      https://www.riss.kr/link?id=A105301071

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      In this paper, we have studied how to search an underwater object by learning the image generated by the side scan sonar in the convolution neural network. In the method of human side analysis of the side scan image or the image, the convolution neural network algorithm can enhance the efficiency of the analysis. The image data of the side scan sonar used in the experiment is the public data of NSWC (Naval Surface Warfare Center) and consists of four kinds of synthetic underwater objects. The convolutional neural network algorithm is based on Faster R-CNN (Region based Convolutional Neural Networks) learning based on region of interest and the details of the neural network are self-organized to fit the data we have. The results of the study were compared with a precision-recall curve, and we investigated the applicability of underwater object detection in convolution neural networks by examining the effect of change of region of interest assigned to sonar image data on detection performance.
      번역하기

      In this paper, we have studied how to search an underwater object by learning the image generated by the side scan sonar in the convolution neural network. In the method of human side analysis of the side scan image or the image, the convolution neura...

      In this paper, we have studied how to search an underwater object by learning the image generated by the side scan sonar in the convolution neural network. In the method of human side analysis of the side scan image or the image, the convolution neural network algorithm can enhance the efficiency of the analysis. The image data of the side scan sonar used in the experiment is the public data of NSWC (Naval Surface Warfare Center) and consists of four kinds of synthetic underwater objects. The convolutional neural network algorithm is based on Faster R-CNN (Region based Convolutional Neural Networks) learning based on region of interest and the details of the neural network are self-organized to fit the data we have. The results of the study were compared with a precision-recall curve, and we investigated the applicability of underwater object detection in convolution neural networks by examining the effect of change of region of interest assigned to sonar image data on detection performance.

      더보기

      참고문헌 (Reference)

      1 Seong-Ryul Kim, "The Reason Why to Use Acoustic Waves on the Sea-Bottom Survey" Korean Society of Marine Engineers 32 (32): 481-489, 2008

      2 P. Blondel, "The Handbook of Side Scan Sonar" Springer Science & Business Media 23-, 2010

      3 J. P. Fish, "Sound Underwater Images: A Guide to the Generation and Interpretation of Side Scan Sonar Data" Lower Cape Publishing Co. 11-47, 1990

      4 L. Wan, "Regularization of neural networks using dropconnect" 1058-1066, 2013

      5 D. Ciresan, "Multi-column deep neural networks for image classification" 3642-3649, 2012

      6 A. Krizhevsky, "Imagenet classification with deep convolutional neural networks" 1097-1105, 2012

      7 O. Russakovsky, "Image net large scale visual recognition challenge" 115 : 211-252, 2015

      8 S. Ren, "Faster r-cnn: Towards real-time object detection with region proposal networks" 39 : 1137-1149, 2017

      9 N. Srivastava, "Dropout: a simple way to prevent neural networks from overfitting" 15 : 1929-1958, 2014

      10 K. He, "Delving deep into rectifiers: Surpassing human-level performance on imagenet classification" 1026-1034, 2015

      1 Seong-Ryul Kim, "The Reason Why to Use Acoustic Waves on the Sea-Bottom Survey" Korean Society of Marine Engineers 32 (32): 481-489, 2008

      2 P. Blondel, "The Handbook of Side Scan Sonar" Springer Science & Business Media 23-, 2010

      3 J. P. Fish, "Sound Underwater Images: A Guide to the Generation and Interpretation of Side Scan Sonar Data" Lower Cape Publishing Co. 11-47, 1990

      4 L. Wan, "Regularization of neural networks using dropconnect" 1058-1066, 2013

      5 D. Ciresan, "Multi-column deep neural networks for image classification" 3642-3649, 2012

      6 A. Krizhevsky, "Imagenet classification with deep convolutional neural networks" 1097-1105, 2012

      7 O. Russakovsky, "Image net large scale visual recognition challenge" 115 : 211-252, 2015

      8 S. Ren, "Faster r-cnn: Towards real-time object detection with region proposal networks" 39 : 1137-1149, 2017

      9 N. Srivastava, "Dropout: a simple way to prevent neural networks from overfitting" 15 : 1929-1958, 2014

      10 K. He, "Delving deep into rectifiers: Surpassing human-level performance on imagenet classification" 1026-1034, 2015

      11 Y. Sun, "Deep learning face representation by joint identification-verification" 1988-1996, 2014

      12 I. Goodfellow, "Deep Learning" The MIT Press 199-216, 2016

      13 S. Reed, "Automated approach to classification of mine-like objects in sidescan sonar using highlight and shadow information" 151 : 48-56, 2004

      14 E. Dura, "Active learning for detection of mine-like objects in side-scan sonar imagery" 30 : 360-371, 2005

      15 C. Goutte, "A probabilistic interpretation of precision, recall and F-score, with implication for evaluation" 5 : 345-359, 2005

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2026 평가예정 재인증평가 신청대상 (재인증)
      2020-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2017-01-01 평가 등재학술지 유지 (계속평가) KCI등재
      2013-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2004-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2001-07-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1999-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.23 0.23 0.22
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.2 0.18 0.398 0.07
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼