RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCI SCIE SCOPUS

      Nonlinear Properties of the Korea Fund Market

      한글로보기

      https://www.riss.kr/link?id=A104130757

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      This paper attempts to analyze the return time series of both equity and balanced funds by using a statistical physics approach to estimate the mechanism of fund performance. Our empirical results suggest that for equity and balanced fund data, the Hurst exponent of the return time series is approximately 0.5 whereas the volatility data yield a long term correlation with the Hurst exponent of 0.9. After the temporal correlation and nonlinearity has been eliminated by using the shuffle and surrogate methods, the Hurst exponent is approximately 0.5. In addition, we measure the complexity by using the multifractality, which can help us to understand the mechanism of the fund performance. We find the presence of multifractality regardless of the data used, which is attributed to extreme events and temporal correlation. In particular, the degree of multifractality of equity funds is very similar to that of the balanced fund even though the funds are characterized by differences in the degree of risk.
      번역하기

      This paper attempts to analyze the return time series of both equity and balanced funds by using a statistical physics approach to estimate the mechanism of fund performance. Our empirical results suggest that for equity and balanced fund data, the Hu...

      This paper attempts to analyze the return time series of both equity and balanced funds by using a statistical physics approach to estimate the mechanism of fund performance. Our empirical results suggest that for equity and balanced fund data, the Hurst exponent of the return time series is approximately 0.5 whereas the volatility data yield a long term correlation with the Hurst exponent of 0.9. After the temporal correlation and nonlinearity has been eliminated by using the shuffle and surrogate methods, the Hurst exponent is approximately 0.5. In addition, we measure the complexity by using the multifractality, which can help us to understand the mechanism of the fund performance. We find the presence of multifractality regardless of the data used, which is attributed to extreme events and temporal correlation. In particular, the degree of multifractality of equity funds is very similar to that of the balanced fund even though the funds are characterized by differences in the degree of risk.

      더보기

      참고문헌 (Reference)

      1 X. Sun, 291 : 553-, 2001

      2 J. W. Kantelhardt, 316 : 87-, 2002

      3 J. Kwapie´n, 350 : 466-, 2005

      4 S. Kumar, 388 : 1593-, 2009

      5 W. -X. Zhou, 88 : 28004-, 2009

      6 G. -H. Mu, 3 : 1631-, 2010

      7 Z. Eisler, 77 : 28001-, 2007

      8 P. O´swi¸ecimaka, 347 : 626-, 2005

      9 Y. -P. Ruan, 390 : 1646-, 2011

      10 R. Morales, 391 : 3180-, 2012

      1 X. Sun, 291 : 553-, 2001

      2 J. W. Kantelhardt, 316 : 87-, 2002

      3 J. Kwapie´n, 350 : 466-, 2005

      4 S. Kumar, 388 : 1593-, 2009

      5 W. -X. Zhou, 88 : 28004-, 2009

      6 G. -H. Mu, 3 : 1631-, 2010

      7 Z. Eisler, 77 : 28001-, 2007

      8 P. O´swi¸ecimaka, 347 : 626-, 2005

      9 Y. -P. Ruan, 390 : 1646-, 2011

      10 R. Morales, 391 : 3180-, 2012

      11 K. Yim, 410 : 327-, 2014

      12 K. Matia, 61 : 422-, 2003

      13 W. Hui, 6 : 21-, 2012

      14 G. Oh, 85 : 214-, 2012

      15 E. Bacry, 64 : 026103-, 2001

      16 Seong Kyu Seo, "Multifractal Intensity in Dynamical Behaviors of Multifractals" 한국물리학회 65 (65): 125-129, 2014

      17 오갑진, "Multifractal Analysis of Implied Volatility in Index Options" 한국물리학회 64 (64): 1751-1757, 2014

      18 J. Feder, "Fractals" Plenum Press 1988

      19 김홍석, "Effects of Modularity in Financial Markets on an Agent-based Model" 한국물리학회 60 (60): 599-603, 2012

      20 임규성, "Dynamical Behavior of Price Forecasting in Structures of Group Correlations" 한국물리학회 67 (67): 395-399, 2015

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2011-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2007-01-01 평가 SCI 등재 (등재유지) KCI등재
      2005-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2002-07-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2000-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.47 0.15 0.31
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.26 0.2 0.26 0.03
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼