RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Influence of Seasonal River Discharge on Tidal Propagation in the Ganges‐Brahmaputra‐Meghna Delta, Bangladesh

      한글로보기

      https://www.riss.kr/link?id=O104923001

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Significant research efforts have been devoted to understanding river‐tide interactions in estuaries. However, studies on the impact of monsoon‐driven fluctuations of river discharge are limited. Here, the role of varying river discharge on the ti...

      Significant research efforts have been devoted to understanding river‐tide interactions in estuaries. However, studies on the impact of monsoon‐driven fluctuations of river discharge are limited. Here, the role of varying river discharge on the tidal propagation and tidal limit along the Ganges‐Brahmaputra‐Meghna Delta (GBMD), a macrotidal estuary subject to seasonal and annual river discharge variations, is investigated. The Delft3D hydrodynamic model is validated and applied to an average flood year condition and nine idealized scenarios covering the typical hydrological conditions. Results reveal that the upper limit of the tidal propagation shifts 75 km upstream during the dry season. The residual water level slope and tidal damping rate increase with river discharge beyond 100 km from the estuary mouth. The balance between the generation and dissipation of quarterdiurnal tides shifts spatially as a result of changes in channel convergence and friction and temporally as a function of river discharge, which controls the total friction in the upper tidal river. The balance between tidal dissipation and generation depends on the residual velocity generated by river discharge and the velocity of the principal tides. The maximal generation of quarterdiurnal tides in the upper GBMD depends on the friction generated from the river‐tide interaction. Critical river discharge thresholds produce an optimal condition of dissipation of semidiurnal tides and generation of quarterdiurnal tides through friction at the upper and middle estuary. River discharge above the critical river discharge amount more rapidly dissipates both semidiurnal and quarterdiurnal tides than generates quarterdiurnal tides from nonlinear interactions.


      The balance between tidal dissipation and generation depends on the residual velocity generated by river‐tide interactions
      High amplitude of friction does not generate high quarterdiurnal tides always
      A critical river discharge determines the maximal generation of quarterdiurnal tides

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼