RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      A study on the approximation function for pairs of primes with difference 10 between consecutive primes = 연속하는 두 소수의 차가 10인 소수 쌍에 대한 근사 함수에 대한 연구

      한글로보기

      https://www.riss.kr/link?id=A107183568

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      In this paper, I provided an approximation function Li*2,10(x) using logarithm integral for the counting function π*2,10(x) of consecutive deca primes. Several personal computers and Mathematica were used to validate the approximation function Li*2,10(x). I found the real value of π*2,10(x) and approximate value of Li*2,10(x) for various x ≤ 1011. By the result of theses calculations, most of the error rates are margins of error of 0.005%. Also, I proved that the sum C2,10(∞) of reciprocals of all primes with difference 10 between primes is finite. To find C2,10(∞), I computed the sum C2,10(x) of reciprocals of all consecutive deca primes for various x ≤ 1011 and I estimate that C2,10(∞) probably lies in the range C2,10(∞)=0.4176±2.1×10-3.
      번역하기

      In this paper, I provided an approximation function Li*2,10(x) using logarithm integral for the counting function π*2,10(x) of consecutive deca primes. Several personal computers and Mathematica were used to validate the approximation function Li...

      In this paper, I provided an approximation function Li*2,10(x) using logarithm integral for the counting function π*2,10(x) of consecutive deca primes. Several personal computers and Mathematica were used to validate the approximation function Li*2,10(x). I found the real value of π*2,10(x) and approximate value of Li*2,10(x) for various x ≤ 1011. By the result of theses calculations, most of the error rates are margins of error of 0.005%. Also, I proved that the sum C2,10(∞) of reciprocals of all primes with difference 10 between primes is finite. To find C2,10(∞), I computed the sum C2,10(x) of reciprocals of all consecutive deca primes for various x ≤ 1011 and I estimate that C2,10(∞) probably lies in the range C2,10(∞)=0.4176±2.1×10-3.

      더보기

      참고문헌 (Reference)

      1 Robert Joseph Harley, "unpublished work"

      2 R. P. Brent, "The distribution of small gaps between successive primes" 28 : 315-324, 1974

      3 Wolfram Research, "The Mathematica Book" Wolfram Media 1993

      4 이헌수, "The Generalization of Clement's Theorem on Pairs of Primes" 한국전산응용수학회 27 (27): 89-96, 2009

      5 G. H. Hardy, "Some problems of"Partitio Numerrorum", III : On the expression of a number as a sum of primes" 44 : 1-70, 1923

      6 J. Bohman, "Some computational results regarding the prime numbers below 2, 000, 000, 000" 13 : 127-, 1974

      7 N. J. A. Sloane, "Sequence A005597 (Decimal expansion of the twin prime constant)"

      8 H.Riesel, "Prime Numbers and Computer Methods for Factorization" Birkauser 255-, 1994

      9 Fröberg, "On the sum of inverses of primes and twin primes" 1 : 15-20, 1961

      10 Yeonyong Park, "On the several differences between primes" 한국전산응용수학회 13 (13): 37-51, 2003

      1 Robert Joseph Harley, "unpublished work"

      2 R. P. Brent, "The distribution of small gaps between successive primes" 28 : 315-324, 1974

      3 Wolfram Research, "The Mathematica Book" Wolfram Media 1993

      4 이헌수, "The Generalization of Clement's Theorem on Pairs of Primes" 한국전산응용수학회 27 (27): 89-96, 2009

      5 G. H. Hardy, "Some problems of"Partitio Numerrorum", III : On the expression of a number as a sum of primes" 44 : 1-70, 1923

      6 J. Bohman, "Some computational results regarding the prime numbers below 2, 000, 000, 000" 13 : 127-, 1974

      7 N. J. A. Sloane, "Sequence A005597 (Decimal expansion of the twin prime constant)"

      8 H.Riesel, "Prime Numbers and Computer Methods for Factorization" Birkauser 255-, 1994

      9 Fröberg, "On the sum of inverses of primes and twin primes" 1 : 15-20, 1961

      10 Yeonyong Park, "On the several differences between primes" 한국전산응용수학회 13 (13): 37-51, 2003

      11 이헌수, "On the primes with p_n+1-p_n =8 and the sum of their reciprocals" 한국전산응용수학회 22 (22): 441-452, 2006

      12 Viggo Brun, "La série 1/5 + 1/7 + 1/11 + 1/13 + 1/17+ 1/19 + 1/29 + 1/31 + 1/41 + 1/43 + 1/59 + 1/61+ …, ou les dénominateurs sont 'nombres premieres jumeaux' est convergente ou finie" 43 : 100-104, 1919

      13 J.W.Wrench, Jr, "Evaluation of Artin's Constant and the Twin-Prime Constant" 15 : 396-398, 1961

      14 T. Nicely, "Enumeration to 10(14)of the Twin primes and Brun's constant" 46 : 195-204, 1996

      15 D. Shin, "Crypft+ : Python/PyQt based File Encryption & Decryption System Using AES and HASH Algorithm" 2 (2): 43-51, 2016

      16 E. S. Sehmer, "A special summation method in the theory of prime numbers and its application to ‘Brun’s sum" 24 : 74-81, 1942

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2024 평가예정 재인증평가 신청대상 (재인증)
      2021-09-27 학술지명변경 한글명 : 한국사물인터넷학회논문지 -> 사물인터넷융복합논문지
      외국어명 : Journal of The Korea Internet of Things Society -> Journal of Internet of Things and Convergence
      KCI등재
      2021-01-01 평가 등재학술지 선정 (계속평가) KCI등재
      2019-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼