In this paper, I provided an approximation function Li*2,10(x) using logarithm integral for the counting function π*2,10(x) of consecutive deca primes. Several personal computers and Mathematica were used to validate the approximation function Li...
http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
https://www.riss.kr/link?id=A107183568
이헌수 (목포대학교) ; Lee, Heon-Soo
2020
English
KCI등재
학술저널
49-57(9쪽)
0
0
상세조회0
다운로드다국어 초록 (Multilingual Abstract)
In this paper, I provided an approximation function Li*2,10(x) using logarithm integral for the counting function π*2,10(x) of consecutive deca primes. Several personal computers and Mathematica were used to validate the approximation function Li...
In this paper, I provided an approximation function Li*2,10(x) using logarithm integral for the counting function π*2,10(x) of consecutive deca primes. Several personal computers and Mathematica were used to validate the approximation function Li*2,10(x). I found the real value of π*2,10(x) and approximate value of Li*2,10(x) for various x ≤ 1011. By the result of theses calculations, most of the error rates are margins of error of 0.005%. Also, I proved that the sum C2,10(∞) of reciprocals of all primes with difference 10 between primes is finite. To find C2,10(∞), I computed the sum C2,10(x) of reciprocals of all consecutive deca primes for various x ≤ 1011 and I estimate that C2,10(∞) probably lies in the range C2,10(∞)=0.4176±2.1×10-3.
참고문헌 (Reference)
1 Robert Joseph Harley, "unpublished work"
2 R. P. Brent, "The distribution of small gaps between successive primes" 28 : 315-324, 1974
3 Wolfram Research, "The Mathematica Book" Wolfram Media 1993
4 이헌수, "The Generalization of Clement's Theorem on Pairs of Primes" 한국전산응용수학회 27 (27): 89-96, 2009
5 G. H. Hardy, "Some problems of"Partitio Numerrorum", III : On the expression of a number as a sum of primes" 44 : 1-70, 1923
6 J. Bohman, "Some computational results regarding the prime numbers below 2, 000, 000, 000" 13 : 127-, 1974
7 N. J. A. Sloane, "Sequence A005597 (Decimal expansion of the twin prime constant)"
8 H.Riesel, "Prime Numbers and Computer Methods for Factorization" Birkauser 255-, 1994
9 Fröberg, "On the sum of inverses of primes and twin primes" 1 : 15-20, 1961
10 Yeonyong Park, "On the several differences between primes" 한국전산응용수학회 13 (13): 37-51, 2003
1 Robert Joseph Harley, "unpublished work"
2 R. P. Brent, "The distribution of small gaps between successive primes" 28 : 315-324, 1974
3 Wolfram Research, "The Mathematica Book" Wolfram Media 1993
4 이헌수, "The Generalization of Clement's Theorem on Pairs of Primes" 한국전산응용수학회 27 (27): 89-96, 2009
5 G. H. Hardy, "Some problems of"Partitio Numerrorum", III : On the expression of a number as a sum of primes" 44 : 1-70, 1923
6 J. Bohman, "Some computational results regarding the prime numbers below 2, 000, 000, 000" 13 : 127-, 1974
7 N. J. A. Sloane, "Sequence A005597 (Decimal expansion of the twin prime constant)"
8 H.Riesel, "Prime Numbers and Computer Methods for Factorization" Birkauser 255-, 1994
9 Fröberg, "On the sum of inverses of primes and twin primes" 1 : 15-20, 1961
10 Yeonyong Park, "On the several differences between primes" 한국전산응용수학회 13 (13): 37-51, 2003
11 이헌수, "On the primes with p_n+1-p_n =8 and the sum of their reciprocals" 한국전산응용수학회 22 (22): 441-452, 2006
12 Viggo Brun, "La série 1/5 + 1/7 + 1/11 + 1/13 + 1/17+ 1/19 + 1/29 + 1/31 + 1/41 + 1/43 + 1/59 + 1/61+ …, ou les dénominateurs sont 'nombres premieres jumeaux' est convergente ou finie" 43 : 100-104, 1919
13 J.W.Wrench, Jr, "Evaluation of Artin's Constant and the Twin-Prime Constant" 15 : 396-398, 1961
14 T. Nicely, "Enumeration to 10(14)of the Twin primes and Brun's constant" 46 : 195-204, 1996
15 D. Shin, "Crypft+ : Python/PyQt based File Encryption & Decryption System Using AES and HASH Algorithm" 2 (2): 43-51, 2016
16 E. S. Sehmer, "A special summation method in the theory of prime numbers and its application to ‘Brun’s sum" 24 : 74-81, 1942
차문화치료 융합프로그램을 통한 노인의 관계적 공격성 완화 : 노인주간보호센터 이용 여성노인들을 대상으로
스마트 팩토리 디지털 트윈(Digital Twin)을 위한 IIoT 통신 기반 ZMP(Zone Master Platform) 설계
기회적 포그 컴퓨팅 환경을 고려한 IoT 테스크의 지연된 오프로딩 제공 방안