In this paper, we define the weak property (${\beta}_{\kappa}$) and get the following strict implications. $$(UC){\Rightarrow}w-({\beta}_1){\Rightarrow}w-({\beta}_2){\Rightarrow}\;{\cdots}\;{\Rightarrow}w-({\beta}_{\infty}){\Rightarrow}(BS)$$.
http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
https://www.riss.kr/link?id=A101200352
2012
English
KCI등재,ESCI
학술저널
415-422(8쪽)
0
상세조회0
다운로드다국어 초록 (Multilingual Abstract)
In this paper, we define the weak property (${\beta}_{\kappa}$) and get the following strict implications. $$(UC){\Rightarrow}w-({\beta}_1){\Rightarrow}w-({\beta}_2){\Rightarrow}\;{\cdots}\;{\Rightarrow}w-({\beta}_{\infty}){\Rightarrow}(BS)$$.
In this paper, we define the weak property (${\beta}_{\kappa}$) and get the following strict implications. $$(UC){\Rightarrow}w-({\beta}_1){\Rightarrow}w-({\beta}_2){\Rightarrow}\;{\cdots}\;{\Rightarrow}w-({\beta}_{\infty}){\Rightarrow}(BS)$$.
KRONECKER FUNCTION RINGS AND PRÜFER-LIKE DOMAINS
SET-VALUED CHOQUET-PETTIS INTEGRALS
DIAMETER OF THE DIRECT PRODUCT OF WIELANDT GRAPH
EVERY LINK IS A BOUNDARY OF A COMPLETE BIPARTITE GRAPH K2,n