In the bone cement composed of dense granules of $\beta-Ca_3(PO_4){_2}(\beta-TCP)$ and $Ca(H_2PO_4){_2}H_2O$, the compressive strength, setting time and temperature rise were measured to observe the degradation of cement with respect to the stored day...
In the bone cement composed of dense granules of $\beta-Ca_3(PO_4){_2}(\beta-TCP)$ and $Ca(H_2PO_4){_2}H_2O$, the compressive strength, setting time and temperature rise were measured to observe the degradation of cement with respect to the stored days before setting. Decreases of compressive strength and temperature rise were observed, while setting time increased with respect to the stored days. The similar trends were repeated with the increase of temperature of storage. Such a change virtually meant the fading of the character of cement and it took place only when the two starting materials were mixed during storage. The degradation could be mitigated taking advantage of granular $\beta$-TCP instead of powdery one. The formation of $CaHPO_4$, which resulted from reaction with ambient humidity, was attributed to the degradation observed during storage. Dependence of the degradation behavior on mixing and temperature during storage was discussed in terms of the driving force for reaction of cement.