RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      딥러닝을 이용한 팔레트 위치 측정 시스템의 성능 개선에 관한 연구

      한글로보기

      https://www.riss.kr/link?id=A107826426

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Recently, the logistics system environment is in the trend of unmanned and automated. In addition, most of the unmanned logistics systems have advanced technology that can identify the location by sensors and load or move goods without operator support or interference. And the unmanned logistics system requires a prerequisite that the pallet position is always in the correct position. However, since not all logistics processes can be automated, there are areas where this assumption does not apply. Various studies have been conducted to implement an unmanned automation system in these environments. Traditional vision-based image processing techniques have a fast processing speed, but there is a weak problem in the disturbance of images. On the other hand, the deep learning technique has a disadvantage in that the object extraction speed is slow due to the large amount of computation. Therefore, in this study, we proposed a method that can measure the exact position of the pallet by verifying the object at high speed while being strong against disturbance by appropriately utilizing the advantages of the two methods.
      번역하기

      Recently, the logistics system environment is in the trend of unmanned and automated. In addition, most of the unmanned logistics systems have advanced technology that can identify the location by sensors and load or move goods without operator suppor...

      Recently, the logistics system environment is in the trend of unmanned and automated. In addition, most of the unmanned logistics systems have advanced technology that can identify the location by sensors and load or move goods without operator support or interference. And the unmanned logistics system requires a prerequisite that the pallet position is always in the correct position. However, since not all logistics processes can be automated, there are areas where this assumption does not apply. Various studies have been conducted to implement an unmanned automation system in these environments. Traditional vision-based image processing techniques have a fast processing speed, but there is a weak problem in the disturbance of images. On the other hand, the deep learning technique has a disadvantage in that the object extraction speed is slow due to the large amount of computation. Therefore, in this study, we proposed a method that can measure the exact position of the pallet by verifying the object at high speed while being strong against disturbance by appropriately utilizing the advantages of the two methods.

      더보기

      참고문헌 (Reference)

      1 박세준, "무인 물류이송을 위한 위치인식센서 기반 지능형 이동로봇의 설계에 관한 연구" 한국정보기술학회 11 (11): 7-13, 2013

      2 D. Lecking, "Variable Pallet Pick-Up for Automatic Guided Vehicles in Industrial Environments" 1169-1174, 2006

      3 Gang Chen, "Pallet recognition and localization method for vision guided forklift" 1-4, 2012

      4 Ihab S. Mohamed, "Detection, localisation and tracking of pallets using machine learning techniques and 2D range data" 32 : 8811-8828, 2019

      5 L Baglivo, "Autonomous pallet localization and picking for industrial forklifts: a robust range and look method" 22 (22): 707-713, 2011

      6 Shijun Wang, "Autonomous Pallet Localization and Picking for Industrial Forklifts Based on the Line Structured Light" 707-713, 2016

      7 M. Seelinger, "Automatic Visual Guidance of a Forklift Engaging a Pallet" 54 (54): 026-1038, 2006

      8 Ji-Youn Oh, "An Experimental Study of Pallet Recognition System Using Kinect Camera" 42 : 167-170, 2013

      9 Jia-Liang Syu, "A computer vision assisted system for autonomous forklift vehicles in real factory environment" 76 (76): 18387-18407, 2016

      10 Guang-zhao Cui, "A Robust Autonomous Mobile Forklift Pallet Recognition" 286-290, 2010

      1 박세준, "무인 물류이송을 위한 위치인식센서 기반 지능형 이동로봇의 설계에 관한 연구" 한국정보기술학회 11 (11): 7-13, 2013

      2 D. Lecking, "Variable Pallet Pick-Up for Automatic Guided Vehicles in Industrial Environments" 1169-1174, 2006

      3 Gang Chen, "Pallet recognition and localization method for vision guided forklift" 1-4, 2012

      4 Ihab S. Mohamed, "Detection, localisation and tracking of pallets using machine learning techniques and 2D range data" 32 : 8811-8828, 2019

      5 L Baglivo, "Autonomous pallet localization and picking for industrial forklifts: a robust range and look method" 22 (22): 707-713, 2011

      6 Shijun Wang, "Autonomous Pallet Localization and Picking for Industrial Forklifts Based on the Line Structured Light" 707-713, 2016

      7 M. Seelinger, "Automatic Visual Guidance of a Forklift Engaging a Pallet" 54 (54): 026-1038, 2006

      8 Ji-Youn Oh, "An Experimental Study of Pallet Recognition System Using Kinect Camera" 42 : 167-170, 2013

      9 Jia-Liang Syu, "A computer vision assisted system for autonomous forklift vehicles in real factory environment" 76 (76): 18387-18407, 2016

      10 Guang-zhao Cui, "A Robust Autonomous Mobile Forklift Pallet Recognition" 286-290, 2010

      11 이태화, "3방향 레이블링과 면특성을 이용한 다단 팔레트 인식" 한국정보기술학회 17 (17): 87-94, 2019

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2022 평가예정 재인증평가 신청대상 (재인증)
      2019-01-01 평가 등재학술지 유지 (계속평가) KCI등재
      2016-01-01 평가 등재학술지 유지 (계속평가) KCI등재
      2012-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2008-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2006-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.45 0.45 0.39
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.38 0.35 0.566 0.16
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼