RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      공학 설계에서 매개변수 설정이 필요 없는 메타휴리스틱 전역 탐색 방법

      한글로보기

      https://www.riss.kr/link?id=A103380462

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Applications of global optimization techniques such as metaheuristics in engineering are recently reported in a lot of literatures. The problems to tackle are constrained optimization problems and are hence hard to solve. Furthermore, the metaheuristic algorithms have several to many algorithmic parameters to be set by a user. Engineers have very little domain knowledge of their problems and setting of the algorithmic parameters is a difficult task. One remedy for this trouble is a development of parameter-less algorithm. One of such algorithms developed recently is Jaya and it shows a prospective performance with a simple single-step method. This study proposes a combined algorithm to adopt Jaya, augment capability of handling constraints, and enhance its performance. The constraint handling should also be parameter-less and algorithmic enhancement is achieved by adding a differential evolution technique. The proposed algorithm has been applied to five engineering design problems. The proposed method shows comparable in convergence and superior performance in robustness to the original method.
      번역하기

      Applications of global optimization techniques such as metaheuristics in engineering are recently reported in a lot of literatures. The problems to tackle are constrained optimization problems and are hence hard to solve. Furthermore, the metaheuristi...

      Applications of global optimization techniques such as metaheuristics in engineering are recently reported in a lot of literatures. The problems to tackle are constrained optimization problems and are hence hard to solve. Furthermore, the metaheuristic algorithms have several to many algorithmic parameters to be set by a user. Engineers have very little domain knowledge of their problems and setting of the algorithmic parameters is a difficult task. One remedy for this trouble is a development of parameter-less algorithm. One of such algorithms developed recently is Jaya and it shows a prospective performance with a simple single-step method. This study proposes a combined algorithm to adopt Jaya, augment capability of handling constraints, and enhance its performance. The constraint handling should also be parameter-less and algorithmic enhancement is achieved by adding a differential evolution technique. The proposed algorithm has been applied to five engineering design problems. The proposed method shows comparable in convergence and superior performance in robustness to the original method.

      더보기

      목차 (Table of Contents)

      • ABSTRACT
      • 1. 서론
      • 2. Jaya알고리즘의 개선
      • 3. 구속 조건의 처리 방법
      • 4. 성능 평가 및 수치 실험
      • ABSTRACT
      • 1. 서론
      • 2. Jaya알고리즘의 개선
      • 3. 구속 조건의 처리 방법
      • 4. 성능 평가 및 수치 실험
      • 5. 결론
      • References
      더보기

      참고문헌 (Reference)

      1 이세정, "전역 최적화 문제의 효율적인 해결을 위한 근사최적화 기법" 한국CDE학회 17 (17): 376-386, 2012

      2 이세정, "근사 최적화를 활용한 뻐꾸기 탐색법의 성능 개선" 한국CDE학회 19 (19): 245-252, 2014

      3 Rao, R. V., "Teaching-learning-based Optimization: A Novel Method for Constrained Mechanical Design Optimization Problems" 43 (43): 303-315, 2011

      4 Piotrowski, A. P., "Review of Differential Evolution Population Size" 32 : 1-24, 2016

      5 Yang, X.-S., "Nature-inspired Metaheuristic Algorithms" Luniver Press 2010

      6 Li, X., "Minimum Penalty for Constrained Evolutionary Optimization" 60 (60): 513-544, 2014

      7 Sadollah, A., "Mine Blast Algorithm:A New Population Based Algorithm for Solving Constrained Engineering Optimization Problems" 13 (13): 2592-2612, 2013

      8 Venkata Rao, R., "Jaya: A Simple and New Optimization Algorithm for Solving Constrained and Unconstrained Optimization Problems" 19-34, 2016

      9 Pandey, H. M., "Jaya a Novel Optimization Algorithm: What, How and Why?" 1-3, 2016

      10 Yang, X.-S., "Engineering Optimisation by Cuckoo Search" 1 (1): 330-343, 2010

      1 이세정, "전역 최적화 문제의 효율적인 해결을 위한 근사최적화 기법" 한국CDE학회 17 (17): 376-386, 2012

      2 이세정, "근사 최적화를 활용한 뻐꾸기 탐색법의 성능 개선" 한국CDE학회 19 (19): 245-252, 2014

      3 Rao, R. V., "Teaching-learning-based Optimization: A Novel Method for Constrained Mechanical Design Optimization Problems" 43 (43): 303-315, 2011

      4 Piotrowski, A. P., "Review of Differential Evolution Population Size" 32 : 1-24, 2016

      5 Yang, X.-S., "Nature-inspired Metaheuristic Algorithms" Luniver Press 2010

      6 Li, X., "Minimum Penalty for Constrained Evolutionary Optimization" 60 (60): 513-544, 2014

      7 Sadollah, A., "Mine Blast Algorithm:A New Population Based Algorithm for Solving Constrained Engineering Optimization Problems" 13 (13): 2592-2612, 2013

      8 Venkata Rao, R., "Jaya: A Simple and New Optimization Algorithm for Solving Constrained and Unconstrained Optimization Problems" 19-34, 2016

      9 Pandey, H. M., "Jaya a Novel Optimization Algorithm: What, How and Why?" 1-3, 2016

      10 Yang, X.-S., "Engineering Optimisation by Cuckoo Search" 1 (1): 330-343, 2010

      11 Coello Coello, C. A., "Constraint-Handling Techniques used with Evolutionary Algorithms" 2603-2624, 2010

      12 Liu, J., "An Exact Penalty Function-based Differential Search Algorithm for Constrained Global Optimization" 20 (20): 1-9, 2015

      13 Deb, K., "An Efficient Constraint Handling Method for Genetic Algorithms" 186 (186): 311-338, 2000

      14 Jordehi, A. R., "A Review on Constraint Handling Strategies in Particle Swarm Optimisation" 26 (26): 1-11, 2015

      15 Beheshti, Z., "A Review of Population-based Meta-Heuristic Algorithms" 5 (5): 1-35, 2013

      16 Dong Li, "A Novel Differential Evolution Algorithm with Gaussian Mutation that Balances Exploration and Exploitation" 18-24, 2013

      17 Venkata Rao, R., "A New Optimization Algorithm for Solving Complex Constrained Design Optimization Problems, Engineering Optimization"

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2026 평가예정 재인증평가 신청대상 (재인증)
      2020-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2017-01-01 평가 등재학술지 유지 (계속평가) KCI등재
      2016-06-13 학회명변경 한글명 : 한국CAD/CAM학회 -> 한국CDE학회
      영문명 : Society Of Cadcam Engineers -> Society for Computational Design and Engineering
      KCI등재
      2016-06-13 학술지명변경 한글명 : 한국CAD/CAM학회 논문집 -> 한국CDE학회 논문집
      외국어명 : 미등록 -> Korean Journal of Computational Design and Engineering
      KCI등재
      2013-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2005-10-04 학술지등록 한글명 : 한국CAD/CAM학회 논문집
      외국어명 : 미등록
      KCI등재
      2004-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2001-07-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1999-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.35 0.35 0.33
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.26 0.24 0.553 0.02
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼