RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      MRF 프레임워크 기반 비모수적 배경 생성 = Non-parametric Background Generation based on MRF Framework

      한글로보기

      https://www.riss.kr/link?id=A101434171

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      국문 초록 (Abstract)

      기존의 배경 생성방법은 주로 시간에 따른 context만을 이용해 복잡한 환경에서는 적용하기 힘들다. 이러한 단점을 해결하기 위해, 본 논문에서는 움직이는 물체를 포함하지 않는 배경 영상을 생성하기 위해 시간에 따른 context와 공간에 따른 context를 융합한 새로운 배경 생성 방법을 제안한다. 제안한 방법은 먼저 샘플링된 프레임 이미지를 m*n의 블록으로 나누고 각각의 블록을 고정 블록과 비고정 블록으로 나눈다. 비고정 블록에 대해서, 각 블록의 시간적 context와 공간적 context를 모델링하기 위해 MRF 프레임워크를 이용한다. MRF 프레임워크는 영상 픽셀과 연관된 특징과 같은 context에 독립된 entity를 모델링하는데 많이 이용되는 방법으로 본 논문에서는 비고정 블록에 대한 시간적 context와 공간적 context를 모델링하기 위해 이용된다. 실험결과는 제안한 방법이 기존의 시간에 따른 context만을 이용했을 경우보다 더 효율적임을 보여준다.
      번역하기

      기존의 배경 생성방법은 주로 시간에 따른 context만을 이용해 복잡한 환경에서는 적용하기 힘들다. 이러한 단점을 해결하기 위해, 본 논문에서는 움직이는 물체를 포함하지 않는 배경 영상을...

      기존의 배경 생성방법은 주로 시간에 따른 context만을 이용해 복잡한 환경에서는 적용하기 힘들다. 이러한 단점을 해결하기 위해, 본 논문에서는 움직이는 물체를 포함하지 않는 배경 영상을 생성하기 위해 시간에 따른 context와 공간에 따른 context를 융합한 새로운 배경 생성 방법을 제안한다. 제안한 방법은 먼저 샘플링된 프레임 이미지를 m*n의 블록으로 나누고 각각의 블록을 고정 블록과 비고정 블록으로 나눈다. 비고정 블록에 대해서, 각 블록의 시간적 context와 공간적 context를 모델링하기 위해 MRF 프레임워크를 이용한다. MRF 프레임워크는 영상 픽셀과 연관된 특징과 같은 context에 독립된 entity를 모델링하는데 많이 이용되는 방법으로 본 논문에서는 비고정 블록에 대한 시간적 context와 공간적 context를 모델링하기 위해 이용된다. 실험결과는 제안한 방법이 기존의 시간에 따른 context만을 이용했을 경우보다 더 효율적임을 보여준다.

      더보기

      다국어 초록 (Multilingual Abstract)

      Previous background generation techniques showed bad performance in complex environments since they used only temporal contexts. To overcome this problem, in this paper, we propose a new background generation method which incorporates spatial as well as temporal contexts of the image. This enabled us to obtain 'clean' background image with no moving objects. In our proposed method, first we divided the sampled frame into m*n blocks in the video sequence and classified each block as either static or non-static. For blocks which are classified as non-static, we used MRF framework to model them in temporal and spatial contexts. MRF framework provides a convenient and consistent way of modeling context-dependent entities such as image pixels and correlated features. Experimental results show that our proposed method is more efficient than the traditional one.
      번역하기

      Previous background generation techniques showed bad performance in complex environments since they used only temporal contexts. To overcome this problem, in this paper, we propose a new background generation method which incorporates spatial as well ...

      Previous background generation techniques showed bad performance in complex environments since they used only temporal contexts. To overcome this problem, in this paper, we propose a new background generation method which incorporates spatial as well as temporal contexts of the image. This enabled us to obtain 'clean' background image with no moving objects. In our proposed method, first we divided the sampled frame into m*n blocks in the video sequence and classified each block as either static or non-static. For blocks which are classified as non-static, we used MRF framework to model them in temporal and spatial contexts. MRF framework provides a convenient and consistent way of modeling context-dependent entities such as image pixels and correlated features. Experimental results show that our proposed method is more efficient than the traditional one.

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼