RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCI SCIE SCOPUS

      Temperature Influence on Erythrocytes' Threshold Limit for Hemolysis in Shear Flow Based on the Immersed Boundary-Lattice Boltzmann Method

      한글로보기

      https://www.riss.kr/link?id=A106096127

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      The temperature of blood pumps and other left ventricular assistance devices (LVAD) increases during operation due to the effects of the electromagnetic drive and mechanical work. The blood is heated when passing through an LVAD. Temperature can influence erythrocytes' mechanical properties and erythrocytes' threshold shear stress for hemolysis in shear flow. A nonlinear two-dimensional membrane model was introduced based on the linear spring network model and nonlinear worm-like-chains (WLC) model. The simulation of erythrocytes in shear flow was performed in the framework of the immersed boundary-lattice Boltzmann method (IB-LBM). When the shear stress was set to the often-cited threshold for hemolysis of 400~Pa and the temperature was 37$^\circ$C, the free energy change of the erythrocyte membrane was calculated to be 3.5\:$\times$\:$10^{-15}$J, which was defined as the threshold value of erythrocytes' membrane energy change for hemolysis. As the temperature rose to 39$^\circ$C, 41$^\circ$C and 43$^\circ$C, the shear stress varied from 200 to 400~Pa, the free energy changed, and the shape parameters were studied. By comparing the threshold energy changes, we found the threshold shear stress values at 39$^\circ$C, 41$^\circ$C and 43$^\circ$C to be 340, 315 and 295~Pa, respectively. Whether red blood cells (RBCs) are damaged when passing through an LVAD can be determined according to these data. This work should provide a basis for LVAD design and optimization.
      번역하기

      The temperature of blood pumps and other left ventricular assistance devices (LVAD) increases during operation due to the effects of the electromagnetic drive and mechanical work. The blood is heated when passing through an LVAD. Temperature can influ...

      The temperature of blood pumps and other left ventricular assistance devices (LVAD) increases during operation due to the effects of the electromagnetic drive and mechanical work. The blood is heated when passing through an LVAD. Temperature can influence erythrocytes' mechanical properties and erythrocytes' threshold shear stress for hemolysis in shear flow. A nonlinear two-dimensional membrane model was introduced based on the linear spring network model and nonlinear worm-like-chains (WLC) model. The simulation of erythrocytes in shear flow was performed in the framework of the immersed boundary-lattice Boltzmann method (IB-LBM). When the shear stress was set to the often-cited threshold for hemolysis of 400~Pa and the temperature was 37$^\circ$C, the free energy change of the erythrocyte membrane was calculated to be 3.5\:$\times$\:$10^{-15}$J, which was defined as the threshold value of erythrocytes' membrane energy change for hemolysis. As the temperature rose to 39$^\circ$C, 41$^\circ$C and 43$^\circ$C, the shear stress varied from 200 to 400~Pa, the free energy changed, and the shape parameters were studied. By comparing the threshold energy changes, we found the threshold shear stress values at 39$^\circ$C, 41$^\circ$C and 43$^\circ$C to be 340, 315 and 295~Pa, respectively. Whether red blood cells (RBCs) are damaged when passing through an LVAD can be determined according to these data. This work should provide a basis for LVAD design and optimization.

      더보기

      참고문헌 (Reference)

      1 T. Komoda, 10 : 124-, 2007

      2 J. P. Mills, 1 : 169-, 2004

      3 M. Nishida, 19 : 322-, 2016

      4 C. A. Milano, 18 : 35-, 2013

      5 B. A. Whitson, 97 : 2097-, 2014

      6 W. Y. Shi, 86 : 996-, 2016

      7 M. Koochaki, 36 : 417-, 2013

      8 T. W. Pan, 6 : 455-, 2009

      9 W. Qiang, 24 : 475-, 2014

      10 S. Shahriari, 45 : 2637-, 2012

      1 T. Komoda, 10 : 124-, 2007

      2 J. P. Mills, 1 : 169-, 2004

      3 M. Nishida, 19 : 322-, 2016

      4 C. A. Milano, 18 : 35-, 2013

      5 B. A. Whitson, 97 : 2097-, 2014

      6 W. Y. Shi, 86 : 996-, 2016

      7 M. Koochaki, 36 : 417-, 2013

      8 T. W. Pan, 6 : 455-, 2009

      9 W. Qiang, 24 : 475-, 2014

      10 S. Shahriari, 45 : 2637-, 2012

      11 R. Sakota, 39 : 1015-, 2015

      12 J. Laflamme, 115 : 1574-, 2015

      13 P. C. Lu, 34 : 1361-, 2001

      14 F. Boehning, 38 : 761-, 2014

      15 L. J. Wurzinger, 54 : 381-, 1985

      16 A. M. Sallam, 21 : 783-, 1984

      17 X. Shi, 72 : 895-, 2013

      18 L. Shi, 76 : 397-, 2014

      19 R. Waugh, 26 : 115-, 1979

      20 C. Yao, 21 : 1101-, 2005

      21 T. G. Poder, 29 : 172-, 2015

      22 T. Ye, 115 : 224701-, 2014

      23 Z-Y. Shen, 2011

      24 L. Xiao, 41 : 1744-, 2013

      25 X. Li, 372 : 20130389-, 2014

      26 W. Pan, 82 : 163-, 2011

      27 E. Evans, 4 : 335-, 1972

      28 K. Tsubota, 81 : 011910-, 2010

      29 D. A. Fedosov, 199 : 1937-, 2010

      30 Y. Wang, 54 : 440-, 2015

      31 S. Dong-Yan, 63 : 074703-, 2014

      32 T. Kr¨uger, 61 : 3485-, 2011

      33 Z. Yun, "Research on the mechanical injure principle of blood and on the structure optimization of the high-Speed spiral blood pump" Central South University 2007

      34 Z. Tan, "Magnetic drive system research of permanent axial blood pump in large air gap" Central South University 2014

      35 A. A. Mohanmad, "Lattice Boltzmann method: fundamentals and engineering applications with computer codes" Springer 31-, 2011

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2011-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2007-01-01 평가 SCI 등재 (등재유지) KCI등재
      2005-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2002-07-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2000-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.47 0.15 0.31
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.26 0.2 0.26 0.03
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼