RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Ca-release Channel of the Sarcoplasmic Reticulum of the Snake (Reptile) Skeletal Muscle = 뱀 (파충류) 골격근 소포체 칼슘유리 채널

      한글로보기

      https://www.riss.kr/link?id=A100667191

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      To investigate properties of Ca-release channel in the reptile skeletal muscle, electrophoretical analysis, purification of RyR, $[^3H]ryanodine$binding study, and $^{45}Ca-release$ were carried out in the SR vesicles prepared from the snake skeletal muscle. The snake SR vesicle has the single high molecular weight protein band on SDS-PAGE, and its mobility was similar with that of rat skeletal SR vesicles. The high molecular weight band on SDS-PACE was found in the $[^3H]ryanodine$ peak fractions $(Fr_{5-7})$ obtained from the purification step of the RyR. Maximal binding site and Kd of the snake SR RyR were 6.36 pmole/mg protein and 17.62 nM, respectively. Specific binding of $[^3H]ryanodine$ was significantly increased by calcium and AMP (P<0.05), but not or slightly inhibited by tetracaine, ruthenium red (5.4%), or $MgCl_2$ (21%). $^{45}Ca-release$ from the SR vesicles loaded passively was significantly increased by the low concentration of calcium $(1{\sim}10{\mu}M)$ and AMP (5 mM)(P<0.05), but significantly decreased by the high concentration $(300{\mu}M)$ of calcium, tetracaine (1 mM), ruthenium red $(10{\mu}M)$, and $MgCl_2$ (2 mM)(P <0.05). From the above results, it is suggested that snake SR vesicles also have the RyR showing the similar properties to those of mammalian skeletal RyR with the exceptions of no or slight inhibition of $[^3H]ryanodine-binding$ by tetracaine, ruthenium red, or $MgCl_2$.
      번역하기

      To investigate properties of Ca-release channel in the reptile skeletal muscle, electrophoretical analysis, purification of RyR, $[^3H]ryanodine$binding study, and $^{45}Ca-release$ were carried out in the SR vesicles prepared from the snake skeletal ...

      To investigate properties of Ca-release channel in the reptile skeletal muscle, electrophoretical analysis, purification of RyR, $[^3H]ryanodine$binding study, and $^{45}Ca-release$ were carried out in the SR vesicles prepared from the snake skeletal muscle. The snake SR vesicle has the single high molecular weight protein band on SDS-PAGE, and its mobility was similar with that of rat skeletal SR vesicles. The high molecular weight band on SDS-PACE was found in the $[^3H]ryanodine$ peak fractions $(Fr_{5-7})$ obtained from the purification step of the RyR. Maximal binding site and Kd of the snake SR RyR were 6.36 pmole/mg protein and 17.62 nM, respectively. Specific binding of $[^3H]ryanodine$ was significantly increased by calcium and AMP (P<0.05), but not or slightly inhibited by tetracaine, ruthenium red (5.4%), or $MgCl_2$ (21%). $^{45}Ca-release$ from the SR vesicles loaded passively was significantly increased by the low concentration of calcium $(1{\sim}10{\mu}M)$ and AMP (5 mM)(P<0.05), but significantly decreased by the high concentration $(300{\mu}M)$ of calcium, tetracaine (1 mM), ruthenium red $(10{\mu}M)$, and $MgCl_2$ (2 mM)(P <0.05). From the above results, it is suggested that snake SR vesicles also have the RyR showing the similar properties to those of mammalian skeletal RyR with the exceptions of no or slight inhibition of $[^3H]ryanodine-binding$ by tetracaine, ruthenium red, or $MgCl_2$.

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼