RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCIE SCOPUS KCI등재

      GROUP-FREENESS AND CERTAIN AMALGAMATED FREENESS

      한글로보기

      https://www.riss.kr/link?id=A100983252

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      In this paper, we will consider certain amalgamated free product structure in crossed product algebras. Let M be a von Neumann algebra acting on a Hilbert space Hand G, a group and let ${\alpha}$ : G${\rightarrow}$ AutM be an action of G on M, where AutM is the group of all automorphisms on M. Then the crossed product $\mathbb{M}=M{\times}{\alpha}$ G of M and G with respect to ${\alpha}$ is a von Neumann algebra acting on $H{\bigotimes}{\iota}^2(G)$, generated by M and $(u_g)_g{\in}G$, where $u_g$ is the unitary representation of g on ${\iota}^2(G)$. We show that $M{\times}{\alpha}(G_1\;*\;G_2)=(M\;{\times}{\alpha}\;G_1)\;*_M\;(M\;{\times}{\alpha}\;G_2)$. We compute moments and cumulants of operators in $\mathbb{M}$. By doing that, we can verify that there is a close relation between Group Freeness and Amalgamated Freeness under the crossed product. As an application, we can show that if $F_N$ is the free group with N-generators, then the crossed product algebra $L_M(F_n){\equiv}M\;{\times}{\alpha}\;F_n$ satisfies that $$L_M(F_n)=L_M(F_{{\kappa}1})\;*_M\;L_M(F_{{\kappa}2})$$, whenerver $n={\kappa}_1+{\kappa}_2\;for\;n,\;{\kappa}_1,\;{\kappa}_2{\in}\mathbb{N}$.
      번역하기

      In this paper, we will consider certain amalgamated free product structure in crossed product algebras. Let M be a von Neumann algebra acting on a Hilbert space Hand G, a group and let ${\alpha}$ : G${\rightarrow}$ AutM be an action of G on M, where A...

      In this paper, we will consider certain amalgamated free product structure in crossed product algebras. Let M be a von Neumann algebra acting on a Hilbert space Hand G, a group and let ${\alpha}$ : G${\rightarrow}$ AutM be an action of G on M, where AutM is the group of all automorphisms on M. Then the crossed product $\mathbb{M}=M{\times}{\alpha}$ G of M and G with respect to ${\alpha}$ is a von Neumann algebra acting on $H{\bigotimes}{\iota}^2(G)$, generated by M and $(u_g)_g{\in}G$, where $u_g$ is the unitary representation of g on ${\iota}^2(G)$. We show that $M{\times}{\alpha}(G_1\;*\;G_2)=(M\;{\times}{\alpha}\;G_1)\;*_M\;(M\;{\times}{\alpha}\;G_2)$. We compute moments and cumulants of operators in $\mathbb{M}$. By doing that, we can verify that there is a close relation between Group Freeness and Amalgamated Freeness under the crossed product. As an application, we can show that if $F_N$ is the free group with N-generators, then the crossed product algebra $L_M(F_n){\equiv}M\;{\times}{\alpha}\;F_n$ satisfies that $$L_M(F_n)=L_M(F_{{\kappa}1})\;*_M\;L_M(F_{{\kappa}2})$$, whenerver $n={\kappa}_1+{\kappa}_2\;for\;n,\;{\kappa}_1,\;{\kappa}_2{\in}\mathbb{N}$.

      더보기

      참고문헌 (Reference)

      1 B. Solel, "You can see the arrows in a quiver operator algebra" 77 (77): 111-122, 2004

      2 V. Jones, "Subfactors and Knots, CBMS Regional Conference Series in Mathematics" Published for the Conference Board of the Mathematical Sciences 80-, 1991

      3 D. Shlyakhtenko, "Some applications of freeness with amalgamation" 500 : 191-212, 1998

      4 F. Radulescu, "Random matrices, amalgamated free products and subfactors of the von Neumann algebra of a free group, of noninteger index" 115 (115): 347-389, 1994

      5 A. Nica, "R-transform in free probability, IHP course note"

      6 A. Nica, "R-diagonal pair-a common approach to Haar unitaries and circular elements)"

      7 A. Nica, "R-cyclic families of matrices in free probability" 188 (188): 227-271, 2002

      8 D. Voiculescu, "Operations on certain non-commutative operator-valued random variables" (232) : 243-275, 1995

      9 M. T. Jury, "Ideal structure in free semigroupoid algebras from directed graphs" 53 (53): 273-302, 2005

      10 G. C. Bell, "Growth of the asymptotic dimension function for groups"

      1 B. Solel, "You can see the arrows in a quiver operator algebra" 77 (77): 111-122, 2004

      2 V. Jones, "Subfactors and Knots, CBMS Regional Conference Series in Mathematics" Published for the Conference Board of the Mathematical Sciences 80-, 1991

      3 D. Shlyakhtenko, "Some applications of freeness with amalgamation" 500 : 191-212, 1998

      4 F. Radulescu, "Random matrices, amalgamated free products and subfactors of the von Neumann algebra of a free group, of noninteger index" 115 (115): 347-389, 1994

      5 A. Nica, "R-transform in free probability, IHP course note"

      6 A. Nica, "R-diagonal pair-a common approach to Haar unitaries and circular elements)"

      7 A. Nica, "R-cyclic families of matrices in free probability" 188 (188): 227-271, 2002

      8 D. Voiculescu, "Operations on certain non-commutative operator-valued random variables" (232) : 243-275, 1995

      9 M. T. Jury, "Ideal structure in free semigroupoid algebras from directed graphs" 53 (53): 273-302, 2005

      10 G. C. Bell, "Growth of the asymptotic dimension function for groups"

      11 A. G. Myasnikov, "Group Theory, Statistics, and Cryptography, Contemporary Mathematics" American Mathematical Society 360-, 2004

      12 I. Cho, "Graph von Neumann algebras" 95 : 95-134, 2007

      13 D. W. Kribs, "Free semigroupoid algebras" 19 (19): 117-159, 2004

      14 D. Voiculescu, "Free Random Variables, A noncommutative probability approach to free products with applications to random matrices, operator algebras and harmonic analysis on free groups. CRM Monograph Series, 1" American Mathematical Society 1992

      15 Ilwoo Cho, "Direct producted $W^{*}$-probability spaces and corresponding amalgamated free stochastic integration" 대한수학회 44 (44): 131-150, 2007

      16 P. Sniady, "Continuous family of invariant subspaces for R-diagonal operators" 146 (146): 329-363, 2001

      17 R. Gliman, "Computational and Statistical Group Theory, Contemporary Mathematics" American Mathematical Society 298-, 2002

      18 R. Speicher, "Combinatorics of free probability theory ihp course note"

      19 R. Speicher, "Combinatorial theory of the free product with amalgamation and operatorvalued free probability theory" 132 (132): 88-, 1998

      20 I. Cho, "Characterization of amalgamated free blocks of a graph von Neumann algebra" 1 : 367-398, 2007

      21 J. Stallings, "Centerless groups–an algebraic formulation of Gottlieb’s theorem" 4 : 129-134, 1965

      22 D. Shlyakhtenko, "A-valued semicircular systems" 166 (166): 1-47, 1999

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2004-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2001-07-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1999-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.4 0.14 0.3
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.23 0.19 0.375 0.03
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼