<P>The CuS/ZnO nanocomposite was successfully synthesized by a simple mechanical method, without adding any surfactants. TEM images showed that CuS existed in the nanocomposite and the size of CuS/ZnO nanocomposite particle was around 35 nm. CuS...
http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
https://www.riss.kr/link?id=A107702152
2014
-
SCOPUS
학술저널
1-7(7쪽)
0
상세조회0
다운로드다국어 초록 (Multilingual Abstract)
<P>The CuS/ZnO nanocomposite was successfully synthesized by a simple mechanical method, without adding any surfactants. TEM images showed that CuS existed in the nanocomposite and the size of CuS/ZnO nanocomposite particle was around 35 nm. CuS...
<P>The CuS/ZnO nanocomposite was successfully synthesized by a simple mechanical method, without adding any surfactants. TEM images showed that CuS existed in the nanocomposite and the size of CuS/ZnO nanocomposite particle was around 35 nm. CuS worked as an electron absorber in the nanocomposite, which was beneficial for the improvement of photocatalysis of ZnO. It was also proved by the experiments performed under the visible light irradiation that CuS could help ZnO degrade methylene blue (MB). The catalytic efficiency of the nanocomposites reached the highest value when 0.5 wt% CuS was added. In addition, compared with pure ZnO, the CuS/ZnO nanocomposite exhibited a better photochemical stability up to 5 catalytic cycles. More importantly, CuS did not reduce the antibacterial property of ZnO. All these results indicated that as-prepared samples had some potential values in practical applications.</P>
Pore Characteristics and Hydrothermal Stability of Mesoporous Silica: Role of Oleic Acid
Effect of Catalytic Layer Thickness on Diameter of Vertically Aligned Individual Carbon Nanotubes