RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      반구형 전두부 실린더에서 발생하는 캐비테이션 유동의 압축성 효과에 대한 수치해석 연구 = NUMERICAL ANALYSIS OF CAVITATION WITH COMPRESSIBILITY EFFECTS AROUND HEMISPHERICAL HEAD-FORM BODY

      한글로보기

      https://www.riss.kr/link?id=A99862435

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Cavitation on an axi-symmetric hemispherical head-form body was studied using an Reynolds-averaged Navier-Stokes equations solver based on a cell-centered finite volume method. To consider compressibility effects on the vapor phase and cavity interface, a pressure-based compressible flow CFD code was developed. To validate the developed CFD code, cavitating flow around the hemispherical head-form body was simulated using pressure-based incompressible and compressible CFD codes and validated against existing experimental data in the three-way comparison. The cavity shedding behavior, length of re-entrant jet, drag history, and Strouhal number of the hemispherical head-form body were compared between two CFD codes. The results, in this paper, suggested that the computations of cavitating flow with compressibility effects improve the description of cavity dynamics.
      번역하기

      Cavitation on an axi-symmetric hemispherical head-form body was studied using an Reynolds-averaged Navier-Stokes equations solver based on a cell-centered finite volume method. To consider compressibility effects on the vapor phase and cavity interfac...

      Cavitation on an axi-symmetric hemispherical head-form body was studied using an Reynolds-averaged Navier-Stokes equations solver based on a cell-centered finite volume method. To consider compressibility effects on the vapor phase and cavity interface, a pressure-based compressible flow CFD code was developed. To validate the developed CFD code, cavitating flow around the hemispherical head-form body was simulated using pressure-based incompressible and compressible CFD codes and validated against existing experimental data in the three-way comparison. The cavity shedding behavior, length of re-entrant jet, drag history, and Strouhal number of the hemispherical head-form body were compared between two CFD codes. The results, in this paper, suggested that the computations of cavitating flow with compressibility effects improve the description of cavity dynamics.

      더보기

      목차 (Table of Contents)

      • 1. 서론
      • 2. 문제 정의
      • 3. 계산방법
      • 4. 해석 결과 및 토의
      • 5. 결론
      • 1. 서론
      • 2. 문제 정의
      • 3. 계산방법
      • 4. 해석 결과 및 토의
      • 5. 결론
      • References
      더보기

      참고문헌 (Reference)

      1 van Leer, B., "Towards the Ultimate Conservative Difference Scheme" 32 (32): 101-136, 1979

      2 Javadi, K, "Three-dimensional compressible-incompressible turbulent flow simulation using a pressure-based algorithm" 37 : 747-766, 2008

      3 Issa, R.I., "Solution of Implicitly Discretized Fluid Flow Equations by Operator Splitting" 62 : 40-65, 1985

      4 Issa, R.I., "Pressure-based compressible calculation method utilizing total variation diminishing schemes" 36 (36): 1652-1657, 1998

      5 Schnerr, G.H., "Physical and Numerical Modeling of Unsteady Cavitation Dynamics" 2001

      6 Kunz, R.F., "Multi-Phase CFD Analysis of Natural and Ventilated Cavitation about Submerged Bodies" 1999

      7 Singhal, A.K., "Mathematical Basis and Validation of the Full Cavitation Model" 124 : 617-624, 2002

      8 Launder, B.E., "Lectures in Mathematical Models of Turbulence" Academic Press 1972

      9 Dittakavi, N., "Large eddy simulation of turbulent-cavitation interactions in a Venturi nozzle" 132 : 121301-121311, 2001

      10 Darbandi, M., "Conceptual linearization of Euler governing equations to solve high speed compressible flow using a pressure-based method" 24 : 583-604, 2008

      1 van Leer, B., "Towards the Ultimate Conservative Difference Scheme" 32 (32): 101-136, 1979

      2 Javadi, K, "Three-dimensional compressible-incompressible turbulent flow simulation using a pressure-based algorithm" 37 : 747-766, 2008

      3 Issa, R.I., "Solution of Implicitly Discretized Fluid Flow Equations by Operator Splitting" 62 : 40-65, 1985

      4 Issa, R.I., "Pressure-based compressible calculation method utilizing total variation diminishing schemes" 36 (36): 1652-1657, 1998

      5 Schnerr, G.H., "Physical and Numerical Modeling of Unsteady Cavitation Dynamics" 2001

      6 Kunz, R.F., "Multi-Phase CFD Analysis of Natural and Ventilated Cavitation about Submerged Bodies" 1999

      7 Singhal, A.K., "Mathematical Basis and Validation of the Full Cavitation Model" 124 : 617-624, 2002

      8 Launder, B.E., "Lectures in Mathematical Models of Turbulence" Academic Press 1972

      9 Dittakavi, N., "Large eddy simulation of turbulent-cavitation interactions in a Venturi nozzle" 132 : 121301-121311, 2001

      10 Darbandi, M., "Conceptual linearization of Euler governing equations to solve high speed compressible flow using a pressure-based method" 24 : 583-604, 2008

      11 Merkle, C.L., "Computational Modeling of the Dynamics of Sheet Cavitation" 1998

      12 Venkateswaran, S., "Computation of multiphase mixture flows with compressibility effects" 180 : 54-77, 2002

      13 Goncalves, E., "Comparison of numerical solvers for cavitating flows" 24 (24): 201-216, 2010

      14 Rouse, H., "Cavitation and Pressure Distribution in Engineering" State University of Iowa 1948

      15 Shin, B.R., "Application of preconditioning method to gas-liquid two-phase flow computations" 126 : 605-612, 2004

      16 Stinebring, D.R., "An Investigation of cavity cycling for ventilated and natural cavities" Pennsylvania State University Pressure, University Park 1983

      17 Kadioglu, S.Y., "Adaptive solution techniques for simulating underwater explosions and implosions" 227 : 2083-2104, 2008

      18 Rincon, J., "A high-resolution pressure-based method for compressible flows" 26 (26): 217-231, 1997

      19 Kissling, K., "A coupled pressure based solution algorithm based on the volume-of-fluid approach for two or more immiscible fluids" 2010

      20 박선호, "3차원 비틀어진 날개 주위의 비정상 공동 유동에 대한 수치적 연구" 한국전산유체공학회 16 (16): 37-46, 2011

      21 박선호, "2차원 및 축대칭 운동체 주위의 초공동 현상에 대한 수치해석" 한국전산유체공학회 16 (16): 14-21, 2011

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2027 평가예정 재인증평가 신청대상 (재인증)
      2021-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2018-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2015-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2011-01-01 평가 등재 1차 FAIL (등재유지) KCI등재
      2009-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2005-06-16 학술지명변경 외국어명 : Jpurnal of Computatuonal Fluids Engineering -> Korean Society of Computatuonal Fluids Engineering KCI등재후보
      2005-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2004-01-01 평가 등재후보 1차 FAIL (등재후보1차) KCI등재후보
      2002-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.2 0.2 0.19
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.16 0.15 0.405 0.05
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼