RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCOPUS

      열응답 실험 및 열저항 해석을 통한 장심도 수직밀폐형 지중열교환기의 성능 분석 = Performance Analysis of a Deep Vertical Closed-Loop Heat Exchanger through Thermal Response Test and Thermal Resistance Analysis

      한글로보기

      https://www.riss.kr/link?id=A103031657

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract) kakao i 다국어 번역

      Due to the limited areal space for installation, borehole heat exchangers (BHEs) at depths deeper than 300 m are considered for geothermal heating and cooling in the urban area. The deep vertical closed-loop BHEs are unconventional due to the depth and the range of the typical installation depth is between 100 and 200 m in Korea. The BHE in the study consists of 50A (outer diameter 50 mm, SDR 11) PE U-tube pipe in a 150 mm diameter borehole with the depth of 300 m. In order to compensate the buoyancy caused by the low density of PE pipe ($0.94{\sim}0.96g/cm^3$) in the borehole filled with ground water, 10 weight band sets (4.6 kg/set) were attached to the bottom of U-tube. A thermal response test (TRT) and fundamental basic surveys on the thermophysical characteristics of the ground were conducted. Ground temperature measures around $15^{\circ}C$ from the surface to 100 m, and the geothermal gradient represents $1.9^{\circ}C/100m$ below 100 m. The TRT was conducted for 48 hours with 17.5 kW heat injection, 28.65 l/min at a circulation fluid flow rate indicates an average temperature difference $8.9^{\circ}C$ between inlet and outlet circulation fluid. The estimated thermophysical parameters are 3.0 W/mk of ground thermal conductivity and 0.104 mk/W of borehole thermal resistance. In the stepwise evaluation of TRT, the ground thermal conductivity was calculated at the standard deviation of 0.16 after the initial 13 hours. The sensitivity analysis on the borehole thermal resistance was also conducted with respect to the PE pipe diameter and the thermal conductivity of backfill material. The borehole thermal resistivity slightly decreased with the increase of the two parameters.
      번역하기

      Due to the limited areal space for installation, borehole heat exchangers (BHEs) at depths deeper than 300 m are considered for geothermal heating and cooling in the urban area. The deep vertical closed-loop BHEs are unconventional due to the depth an...

      Due to the limited areal space for installation, borehole heat exchangers (BHEs) at depths deeper than 300 m are considered for geothermal heating and cooling in the urban area. The deep vertical closed-loop BHEs are unconventional due to the depth and the range of the typical installation depth is between 100 and 200 m in Korea. The BHE in the study consists of 50A (outer diameter 50 mm, SDR 11) PE U-tube pipe in a 150 mm diameter borehole with the depth of 300 m. In order to compensate the buoyancy caused by the low density of PE pipe ($0.94{\sim}0.96g/cm^3$) in the borehole filled with ground water, 10 weight band sets (4.6 kg/set) were attached to the bottom of U-tube. A thermal response test (TRT) and fundamental basic surveys on the thermophysical characteristics of the ground were conducted. Ground temperature measures around $15^{\circ}C$ from the surface to 100 m, and the geothermal gradient represents $1.9^{\circ}C/100m$ below 100 m. The TRT was conducted for 48 hours with 17.5 kW heat injection, 28.65 l/min at a circulation fluid flow rate indicates an average temperature difference $8.9^{\circ}C$ between inlet and outlet circulation fluid. The estimated thermophysical parameters are 3.0 W/mk of ground thermal conductivity and 0.104 mk/W of borehole thermal resistance. In the stepwise evaluation of TRT, the ground thermal conductivity was calculated at the standard deviation of 0.16 after the initial 13 hours. The sensitivity analysis on the borehole thermal resistance was also conducted with respect to the PE pipe diameter and the thermal conductivity of backfill material. The borehole thermal resistivity slightly decreased with the increase of the two parameters.

      더보기

      참고문헌 (Reference)

      1 조희남, "고심도 지중열전도도에 의한 지열 응용의 효율성" 대한지질공학회 22 (22): 233-241, 2012

      2 Gehlin S, "Thermal response test: method development and evaluation" Luleå University of Technology 2002

      3 Focaccia S, "Thermal response test numerical modeling using a dynamic simulator" 1 (1): 2013

      4 Koenig A, "Thermal resistance of borehole heat exchangers composed of multiple loops and custom shapes" 3 (3): 2015

      5 MOTIE, "The second national energy master plan" 2014

      6 Sanner B, "Technology, development status, and routine application of thermal response test" 2007

      7 Signorelli S, "Numerical evaluation of thermal response tests" 36 (36): 141-166, 2007

      8 Lee, Dae-sung, "Korea Institute of Geoscience and Mineral Resources, Geological map of Korea, 1:50,000" 1974

      9 Kavanaugh S, "Investigation of methods for determining soil and rock formation thermal properties from short term field tests" 2000

      10 Shim B.O, "Ground thermal conductivity for (ground source heat pumps) GSHPs in Korea" 56 : 167-174, 2013

      1 조희남, "고심도 지중열전도도에 의한 지열 응용의 효율성" 대한지질공학회 22 (22): 233-241, 2012

      2 Gehlin S, "Thermal response test: method development and evaluation" Luleå University of Technology 2002

      3 Focaccia S, "Thermal response test numerical modeling using a dynamic simulator" 1 (1): 2013

      4 Koenig A, "Thermal resistance of borehole heat exchangers composed of multiple loops and custom shapes" 3 (3): 2015

      5 MOTIE, "The second national energy master plan" 2014

      6 Sanner B, "Technology, development status, and routine application of thermal response test" 2007

      7 Signorelli S, "Numerical evaluation of thermal response tests" 36 (36): 141-166, 2007

      8 Lee, Dae-sung, "Korea Institute of Geoscience and Mineral Resources, Geological map of Korea, 1:50,000" 1974

      9 Kavanaugh S, "Investigation of methods for determining soil and rock formation thermal properties from short term field tests" 2000

      10 Shim B.O, "Ground thermal conductivity for (ground source heat pumps) GSHPs in Korea" 56 : 167-174, 2013

      11 Wagner R, "Evaluating thermal response tests using parameter estimation for thermal conductivity and thermal capacity" 2 : 349-, 2005

      12 Austin WA, "Development of an in-situ system for measuring ground thermal properties" Oklahoma State University 1998

      13 Koenig, A, "Development of a thermal resistance model to evaluate wellbore heat exchange efficiency" 5 (5): 297-304, 2014

      14 Raymond J, "A review of thermal response test analysis using pumping test concepts" 49 : 932-945, 2011

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2013-01-01 평가 등재 1차 FAIL (등재유지) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2004-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2001-07-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1999-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.35 0.35 0.34
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.29 0.27 0.625 0.19
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼