RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재후보 SCOPUS

      Properties of the Poisson-power Function Distribution

      한글로보기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      When a neutral particle beam(NPB) aimed at the object and receive a small number of neutron signals at the detector without any errors, it obeys Poisson law. Under the two assumptions that neutral particle scattering distribution and aiming errors have a circular Gaussian distributions that neutral particle scattering distribution and aiming errors have a circular Gaussian distribution respectively, an exact probability distribution of neutral particles vecomes a Poisson-power function distribution. We study and prove some properties, such as limiting distribution, unimodality, stochastical ordering, computational recursion fornula, of this distribution. We also prove monotone likelihood ratio(MLR) property of this distribution. Its MLR property can be used to find a criteria for the hypothesis testing problem.
      번역하기

      When a neutral particle beam(NPB) aimed at the object and receive a small number of neutron signals at the detector without any errors, it obeys Poisson law. Under the two assumptions that neutral particle scattering distribution and aiming errors hav...

      When a neutral particle beam(NPB) aimed at the object and receive a small number of neutron signals at the detector without any errors, it obeys Poisson law. Under the two assumptions that neutral particle scattering distribution and aiming errors have a circular Gaussian distributions that neutral particle scattering distribution and aiming errors have a circular Gaussian distribution respectively, an exact probability distribution of neutral particles vecomes a Poisson-power function distribution. We study and prove some properties, such as limiting distribution, unimodality, stochastical ordering, computational recursion fornula, of this distribution. We also prove monotone likelihood ratio(MLR) property of this distribution. Its MLR property can be used to find a criteria for the hypothesis testing problem.

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼