RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      Spectroscopic analysis of methacrylate groups introduced on silica particle surfaces by the aza-Michael addition reaction

      한글로보기

      https://www.riss.kr/link?id=A103562592

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      We modified silica nanoparticles with a N'-(3-trimethoxysilylpropyl)diethylenetriamine (TPDT) silane coupling agent, which has one primary and two secondary amino groups in each molecule, to introduce amino groups on silica surfaces. After surface modification of silica, we used an acrylate group containing 3-(acryloyloxy)-2-hydroxypropyl methacrylate (AHM) to introduce free radical polymerizable methacrylate groups by the aza-Michael addition reaction.
      Fourier transform infrared spectroscopy (FTIR), elemental analysis (EA), liquid state 1H and 13C nuclear magnetic resonance spectroscopy (NMR) and solid state cross polarization magic angle spinning (CP/MAS) 29Si NMR were used to investigate the effects of various reaction conditions on the degree of reaction between the N-H groups of the TPDT-modified silica surface and the acrylate groups of AHM. We found that approximately 48% of the N-H groups of the TPDT-modified silica surface reacted with the acrylate groups of AHM, compared with approximately 83% of the N-H groups of pure TPDT reacting with the acrylate groups of AHM at the same reaction conditions. This lower degree of the aza-Michael addition reaction between the N-H groups of the TPDT grafted on the solid silica particle versus the N-H groups of pure TPDT, both with acrylate groups of liquid AHM, may be caused by the lower mobility of the N-H groups of the grafted TPDT on the solid silica particle and the higher steric hindrance caused by the solid silica particle.
      번역하기

      We modified silica nanoparticles with a N'-(3-trimethoxysilylpropyl)diethylenetriamine (TPDT) silane coupling agent, which has one primary and two secondary amino groups in each molecule, to introduce amino groups on silica surfaces. After surface mod...

      We modified silica nanoparticles with a N'-(3-trimethoxysilylpropyl)diethylenetriamine (TPDT) silane coupling agent, which has one primary and two secondary amino groups in each molecule, to introduce amino groups on silica surfaces. After surface modification of silica, we used an acrylate group containing 3-(acryloyloxy)-2-hydroxypropyl methacrylate (AHM) to introduce free radical polymerizable methacrylate groups by the aza-Michael addition reaction.
      Fourier transform infrared spectroscopy (FTIR), elemental analysis (EA), liquid state 1H and 13C nuclear magnetic resonance spectroscopy (NMR) and solid state cross polarization magic angle spinning (CP/MAS) 29Si NMR were used to investigate the effects of various reaction conditions on the degree of reaction between the N-H groups of the TPDT-modified silica surface and the acrylate groups of AHM. We found that approximately 48% of the N-H groups of the TPDT-modified silica surface reacted with the acrylate groups of AHM, compared with approximately 83% of the N-H groups of pure TPDT reacting with the acrylate groups of AHM at the same reaction conditions. This lower degree of the aza-Michael addition reaction between the N-H groups of the TPDT grafted on the solid silica particle versus the N-H groups of pure TPDT, both with acrylate groups of liquid AHM, may be caused by the lower mobility of the N-H groups of the grafted TPDT on the solid silica particle and the higher steric hindrance caused by the solid silica particle.

      더보기

      참고문헌 (Reference)

      1 G. K. Dirk, 11 : 3061-, 1995

      2 W. Decheng, 37 : 6763-, 2004

      3 L. Martin, 18 : 207-, 2008

      4 J. Kamer, 6 : 1488-, 2002

      5 M. -C. B. Salon, 45 : 473-, 2007

      6 M. -C. B. Salon, 289 : 249-, 2005

      7 M. Michell, 108 : 3563-, 2004

      8 J. P. Matinlinna, 36 : 1314-, 2004

      9 S. M. Senani, 50 : 152-, 2009

      10 R. H. Halvorson, 19 : 327-, 2003

      1 G. K. Dirk, 11 : 3061-, 1995

      2 W. Decheng, 37 : 6763-, 2004

      3 L. Martin, 18 : 207-, 2008

      4 J. Kamer, 6 : 1488-, 2002

      5 M. -C. B. Salon, 45 : 473-, 2007

      6 M. -C. B. Salon, 289 : 249-, 2005

      7 M. Michell, 108 : 3563-, 2004

      8 J. P. Matinlinna, 36 : 1314-, 2004

      9 S. M. Senani, 50 : 152-, 2009

      10 R. H. Halvorson, 19 : 327-, 2003

      11 T. Ishii, 126 : 9558-, 2004

      12 B. D. Mather, 31 : 487-, 2006

      13 E. Satu, 108 : 9650-, 2004

      14 S. B. Zeynep, 49 : 5042-, 2011

      15 T. Hooshmand, 20 : 635-, 2004

      16 유선화, "실리카 나노입자의 표면처리와 이를 포함한 열가소성 폴리우레탄 복합소재의 특성" 한국고분자학회 36 (36): 721-726, 2012

      17 Nasim Rakhshan, "The effect of chemical modification of SiO2 nanoparticles on the nanofiltration characteristics of polyamide membrane" 한국화학공학회 32 (32): 2524-2533, 2015

      18 "Silane Coupling Agents" Gelest, Inc. 2006

      19 D. W. Mayo, "Course Notes on the Interpretation of Infrared and Raman Spectra" Wiley 2004

      20 김성우, "Characterization of UV curable hybrid hard coating materials prepared by sol-gel method" 한국화학공학회 28 (28): 298-303, 2011

      21 E. F. Vansant, "Characterization and Chemical Modification of the Silica Surface" Elsevier 1995

      22 전하나, "2차 아미노기를 갖는 실리카 나노입자와 (메타)아크릴레이트 단량체와의 마이클 부가반응에 대한 분광학적 분석" 한국고분자학회 36 (36): 668-676, 2012

      23 이상미, "2차 아미노기가 결합된 실리카 나노 입자 표면에 3-(Acryloyloxy)-2-hydroxypropyl Methacrylate의 마이클 부가 반응에 대한 분광학적 분석" 한국고분자학회 38 (38): 257-264, 2014

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2016-06-21 학술지명변경 한글명 : The Korean Journal of Chemical Engineering -> Korean Journal of Chemical Engineering
      외국어명 : The Korean Journal of Chemical Engineering -> Korean Journal of Chemical Engineering
      KCI등재
      2011-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2007-09-27 학회명변경 영문명 : The Korean Institute Of Chemical Engineers -> The Korean Institute of Chemical Engineers KCI등재
      2007-09-03 학술지명변경 한글명 : The Korean Journal of Chemical Engineeri -> The Korean Journal of Chemical Engineering
      외국어명 : The Korean Journal of Chemical Engineeri -> The Korean Journal of Chemical Engineering
      KCI등재
      2007-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2005-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2002-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1999-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 1.92 0.72 1.4
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      1.15 0.94 0.403 0.14
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼