RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      MXene‐Reinforced Cellulose Nanofibril Inks for 3D‐Printed Smart Fibres and Textiles

      한글로보기

      https://www.riss.kr/link?id=O113278875

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Fibre‐based materials have received tremendous attention due to their flexibility and wearability. Although great efforts have been devoted to achieve high‐performance fibres over the past several years, it is still challenging for multifunctional...

      Fibre‐based materials have received tremendous attention due to their flexibility and wearability. Although great efforts have been devoted to achieve high‐performance fibres over the past several years, it is still challenging for multifunctional macroscopic fibres to satisfy versatile applications. 2D transition metal carbides/nitrides (MXenes) with intriguing physical/chemical properties have been explored in broad application, and may be able to reinforce synthetic fibres. Inspired by natural materials, for the first time, flexible smart fibres and textiles are fabricated using a 3D printing process with hybrid inks of TEMPO (2,2,6,6‐tetramethylpiperidine‐1‐oxylradi‐cal)‐mediated oxidized cellulose nanofibrils (TOCNFs) and Ti3C2 MXene. The hybrid inks display good rheological properties, which allow them to achieve accurate structures and be rapidly printed. TOCNFs/Ti3C2 in hybrid inks self‐assemble to fibres with an aligned structure in ethanol, mimicking the features of the natural structures of plant fibres. In contrast to conventional synthetic fibres with limited functions, smart TOCNFs/Ti3C2 fibres and textiles exhibit significant responsiveness to multiple external stimuli (electrical/photonic/mechanical). TOCNFs/Ti3C2 textiles with electromechanical performance can be processed into sensitive strain sensors. Such multifunctional smart fibres and textiles will be promising in diverse applications, including wearable heating textiles, human health monitoring, and human–machine interfaces.
      Highly flexible and conductive smart fibres and textiles with integrated multifunctionality are fabricated by assembling cellulose nanofibrils and Ti3C2 MXene using a facile 3D printing process. The resultant smart fibres and textiles exhibit excellent responsiveness to multiple external stimuli (electrical/photonic/mechanical). The smart textile can also be processed into a sensitive strain sensor to achieve real‐time human motion recognition.

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼