RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      인간 컴퓨터 상호작용 : SIFT 기술자를 이용한 얼굴 표정인식 = Human Computer Interaction : Facial Expression Recognition Using SIFT Descriptor

      한글로보기

      https://www.riss.kr/link?id=A101802415

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      This paper proposed a facial expression recognition approach using SIFT feature and SVM classifier. The SIFT was generally employed as feature descriptor at key-points in object recognition fields. However, this paper applied the SIFT descriptor as feature vector for facial expression recognition. In this paper, the facial feature was extracted by applying SIFT descriptor at each sub-block image without key-point detection procedure, and the facial expression recognition was performed using SVM classifier. The performance evaluation was carried out through comparison with binary pattern feature-based approaches such as LBP and LDP, and the CK facial expression database and the JAFFE facial expression database were used in the experiments. From the experimental results, the proposed method using SIFT descriptor showed performance improvements of 6.06% and 3.87% compared to previous approaches for CK database and JAFFE database, respectively.
      번역하기

      This paper proposed a facial expression recognition approach using SIFT feature and SVM classifier. The SIFT was generally employed as feature descriptor at key-points in object recognition fields. However, this paper applied the SIFT descriptor as fe...

      This paper proposed a facial expression recognition approach using SIFT feature and SVM classifier. The SIFT was generally employed as feature descriptor at key-points in object recognition fields. However, this paper applied the SIFT descriptor as feature vector for facial expression recognition. In this paper, the facial feature was extracted by applying SIFT descriptor at each sub-block image without key-point detection procedure, and the facial expression recognition was performed using SVM classifier. The performance evaluation was carried out through comparison with binary pattern feature-based approaches such as LBP and LDP, and the CK facial expression database and the JAFFE facial expression database were used in the experiments. From the experimental results, the proposed method using SIFT descriptor showed performance improvements of 6.06% and 3.87% compared to previous approaches for CK database and JAFFE database, respectively.

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼