RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      Influence of axial clearance on the performance characteristics of a turbopump

      한글로보기

      https://www.riss.kr/link?id=A107936851

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      To evaluate the influence of axial clearance on the performance characteristics in turbopumps, numerical simulations of an entire flow passage were carried out. The simulations were validated by performance characteristic experiments. The progress of ...

      To evaluate the influence of axial clearance on the performance characteristics in turbopumps, numerical simulations of an entire flow passage were carried out. The simulations were validated by performance characteristic experiments. The progress of the reciprocating axial movement in the rotor between the front and back covers was disassembled into five fixed clearances groups. Hump characteristic occurs at the same flow rate under these clearances groups. The hydraulic loss of the inducer-impeller was clearly influenced by the clearances. In particular, the hydraulic loss of the impeller changes significantly at the low flow rate under the ±0.3 mm clearance. With the increase of the flow rate, the effect of the clearance change on the flow is weakened. An innovative entropy production analysis was also performed. The distribution of the high local entropy production rate at the impeller inlet under the 0 mm clearance and at the impeller outlet under the −0.15 mm and −0.3 mm clearances overlapped with the vortex caused by flow separation, and the counterpart at the back cover is concentrated around the clearance structures, thereby leading to high hydraulic loss.

      더보기

      참고문헌 (Reference)

      1 최창호, "인듀서 익단간극이 터보펌프용 펌프의 흡입성능에 미치는 영향" 한국유체기계학회 15 (15): 41-45, 2012

      2 T. Shimura, "Stability of an axial thrust self-balancing system" 135 (135): 011105-, 2013

      3 A. G. Vermes, "Source term based modeling of rotating cavitation in turbopumps" 141 (141): 061002-, 2019

      4 S. Jeon, "Rotordynamic analysis of a high thrust liquid rocket engine fuel (Kerosene) turbopump" 26 (26): 169-175, 2013

      5 A. Mishra, "Predicting performance of axial pump inducer of LOX booster turbo-pump of staged combustion cycle based rocket engine using CFD" 101 : 1-8, 2015

      6 O. Coutier-Delgosha, "Numerical simulation of turbopump inducer cavitating behavior" 2005 (2005): 135-142, 2005

      7 B. Yang, "Numerical investigation of the clocking effect between inducer and impeller on pressure pulsations in a liquid rocket engine oxygen turbopump" 141 (141): 4042160-, 2018

      8 F. Kock, "Local entropy production in turbulent shear flows: a high-Reynolds number model with wall functions" 47 (47): 2205-2215, 2004

      9 S. Fukao, "LES simulation of backflow vortex structure at the inlet of an inducer" 70 (70): 3058-3065, 2004

      10 B. Schmandt, "Internal flow losses: a fresh look at old concepts" 133 (133): 051201-, 2011

      1 최창호, "인듀서 익단간극이 터보펌프용 펌프의 흡입성능에 미치는 영향" 한국유체기계학회 15 (15): 41-45, 2012

      2 T. Shimura, "Stability of an axial thrust self-balancing system" 135 (135): 011105-, 2013

      3 A. G. Vermes, "Source term based modeling of rotating cavitation in turbopumps" 141 (141): 061002-, 2019

      4 S. Jeon, "Rotordynamic analysis of a high thrust liquid rocket engine fuel (Kerosene) turbopump" 26 (26): 169-175, 2013

      5 A. Mishra, "Predicting performance of axial pump inducer of LOX booster turbo-pump of staged combustion cycle based rocket engine using CFD" 101 : 1-8, 2015

      6 O. Coutier-Delgosha, "Numerical simulation of turbopump inducer cavitating behavior" 2005 (2005): 135-142, 2005

      7 B. Yang, "Numerical investigation of the clocking effect between inducer and impeller on pressure pulsations in a liquid rocket engine oxygen turbopump" 141 (141): 4042160-, 2018

      8 F. Kock, "Local entropy production in turbulent shear flows: a high-Reynolds number model with wall functions" 47 (47): 2205-2215, 2004

      9 S. Fukao, "LES simulation of backflow vortex structure at the inlet of an inducer" 70 (70): 3058-3065, 2004

      10 B. Schmandt, "Internal flow losses: a fresh look at old concepts" 133 (133): 051201-, 2011

      11 T. Shimura, "Internal flow and axial thrust balancing of a rocket pump" 134 (134): 041103-, 2012

      12 H. Hiraki, "Influence of impeller’s elastic deformation on the stability of balance piston mechanism of rocket engine turbopump" 240 (240): 052028-, 2019

      13 Y. A. Cengel, "Fundamentals of thermal-fluid sciences" 54 (54): B110-B112, 2001

      14 D. Y. Li, "Entropy production analysis of hysteresis characteristic of a pump-turbine model" 149 : 175-191, 2017

      15 H. Kim, "Efficient and accurate computations of cryogenic cavitating flows around turbopump inducer" 24-27, 2013

      16 C. Kim, "Effects of inducer tip clearance on the performance and flow characteristics of a pump in a turbopump" 231 (231): 398-414, 2017

      17 J. Pei, "Effects of distance between impeller and guide vane on losses in a low head pump by entropy production analysis" 8 (8): 957-976, 2016

      18 P. Kalinichenko, "Effective modes of axial balancing of centrifugal pump rotor" 39 : 111-118, 2012

      19 K. K. Luo, "Effect of suction chamber baffles on pressure fluctuations in a low specific speed centrifugal pump" 21 (21): 1441-1455, 2019

      20 H. Horiguchi, "Dynamic characteristics of the radial clearance flow between axially oscillating rotational disk and stationary disk" 37 (37): 52-62, 2009

      21 E. Jeong, "Current status of a turbopump turbine development for the improvement of thermo-mechanical reliability" 10 (10): 154-161, 2012

      22 D. J. Kim, "Cavitation instabilities of an inducer in a cryogenic pump" 132 : 19-24, 2017

      23 R. Z. Gong, "Application of entropy production theory to hydro-turbine hydraulic analysis" 56 (56): 1636-1643, 2013

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2012-11-05 학술지명변경 한글명 : 대한기계학회 영문 논문집 -> Journal of Mechanical Science and Technology KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-19 학술지명변경 한글명 : KSME International Journal -> 대한기계학회 영문 논문집
      외국어명 : KSME International Journal -> Journal of Mechanical Science and Technology
      KCI등재
      2006-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2004-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2001-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1998-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 1.04 0.51 0.84
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.74 0.66 0.369 0.12
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼