Classification methods based on dual energy X-ray absorptiometry, ultrasonic waves, and quantitative computed tomography have been proposed. Also, a classification method based on machine learning with bone mineral density and structural indicators ex...
Classification methods based on dual energy X-ray absorptiometry, ultrasonic waves, and quantitative computed tomography have been proposed. Also, a classification method based on machine learning with bone mineral density and structural indicators extracted from the CT images has been proposed. We propose a method which enhances the performance of existing classification method based on bone mineral density and structural indicators by extending structural indicators and using principal component analysis. Experimental result shows that the proposed method in this paper improves the correctness of osteoporosis classification 2.8% with extended structural indicators only and 4.8% with both extended structural indicators and principal component analysis. In addition, this paper proposes a method of automatic phantom analysis needed to convert the CT values to BMD values. While existing method requires manual operation to mark the bone region within the phantom, the proposed method detects the bone region automatically by detecting circles in the CT image. The proposed method and the existing method gave the same conversion formula for converting CT value to bone mineral density.