RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      집광형 태양열 발전 시스템에서의 태양열유속 분포의 변화에 따른 열전달 수치해석 연구

      한글로보기

      https://www.riss.kr/link?id=A108085508

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Concentrating solar power system (CSP) is one of the renewable energies which accumulates solar energy concentrated by condensing mirrors and reflectors in solar absorbers. Boiled water then operates steam turbines to generate electricity. So far, many studies have been conducted for optimization design of CSP which are mostly focused on comparing the materials and dimensions of the absorber to increase thermal efficiency. In this study, we tried to compare heat transfer in solar receiver from different heat flux distributions considering daily change of the azimuthal angle of the solar radiation. A Numerical study was performed using ANSYS FLUENT and appropriate temperature boundary condition was enforced at the receiver inlet using User-Defined-Function. Energy balance was modeled at the receiver inlet considering convectional and radiational loss to the surrounding. The amount of heat transfer to the receiver and heat loss to the surrounding from several characteristic heat flux distributions are compared. In addition, effects from the convective heat transfer coefficient, thermal conductivity, and porosity of the solar absorber are investigated. It has been found that eccentric distribution of the solar heat flux deteriorates thermal efficiency considerably. It is also found that heat transfer becomes larger with small convective heat transfer coefficient and large thermal conductivity. With lowering the porosity, the amount of heat transfer generally increases. But the gain is rather small at very low value with significantly high pressure drop.
      번역하기

      Concentrating solar power system (CSP) is one of the renewable energies which accumulates solar energy concentrated by condensing mirrors and reflectors in solar absorbers. Boiled water then operates steam turbines to generate electricity. So far, man...

      Concentrating solar power system (CSP) is one of the renewable energies which accumulates solar energy concentrated by condensing mirrors and reflectors in solar absorbers. Boiled water then operates steam turbines to generate electricity. So far, many studies have been conducted for optimization design of CSP which are mostly focused on comparing the materials and dimensions of the absorber to increase thermal efficiency. In this study, we tried to compare heat transfer in solar receiver from different heat flux distributions considering daily change of the azimuthal angle of the solar radiation. A Numerical study was performed using ANSYS FLUENT and appropriate temperature boundary condition was enforced at the receiver inlet using User-Defined-Function. Energy balance was modeled at the receiver inlet considering convectional and radiational loss to the surrounding. The amount of heat transfer to the receiver and heat loss to the surrounding from several characteristic heat flux distributions are compared. In addition, effects from the convective heat transfer coefficient, thermal conductivity, and porosity of the solar absorber are investigated. It has been found that eccentric distribution of the solar heat flux deteriorates thermal efficiency considerably. It is also found that heat transfer becomes larger with small convective heat transfer coefficient and large thermal conductivity. With lowering the porosity, the amount of heat transfer generally increases. But the gain is rather small at very low value with significantly high pressure drop.

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼