RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      인지과학의 수학적 기틀 = The Mathematical Foundations of Cognitive Science

      한글로보기

      https://www.riss.kr/link?id=A101558774

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract) kakao i 다국어 번역

      Anyone wishing to understand cognitive science, a converging science, need to become familiar with three major mathematical landmarks: Turing machines, Neural networks, and $G\ddot{o}del's$ incompleteness theorems. The present paper aims to explore the mathematical foundations of cognitive science, focusing especially on these historical landmarks. We begin by considering cognitive science as a metamathematics. The following parts addresses two mathematical models for cognitive systems; Turing machines as the computer system and Neural networks as the brain system. The last part investigates $G\ddot{o}del's$ achievements in cognitive science and its implications for the future of cognitive science.
      번역하기

      Anyone wishing to understand cognitive science, a converging science, need to become familiar with three major mathematical landmarks: Turing machines, Neural networks, and $G\ddot{o}del's$ incompleteness theorems. The present paper aims to explore th...

      Anyone wishing to understand cognitive science, a converging science, need to become familiar with three major mathematical landmarks: Turing machines, Neural networks, and $G\ddot{o}del's$ incompleteness theorems. The present paper aims to explore the mathematical foundations of cognitive science, focusing especially on these historical landmarks. We begin by considering cognitive science as a metamathematics. The following parts addresses two mathematical models for cognitive systems; Turing machines as the computer system and Neural networks as the brain system. The last part investigates $G\ddot{o}del's$ achievements in cognitive science and its implications for the future of cognitive science.

      더보기

      참고문헌 (Reference)

      1 현우식, "튜링의 기계주의에 대한 괴델의 비평" 한국수학사학회 17 (17): 27-36, 2004

      2 Newell, A, "통합인지이론(Unified Theory of Cognition)" 아카넷 2002

      3 한광희, "인지과학:마음·언어·기계" 학지사 2000

      4 이정민, "인지과학" 태학사 2001

      5 이정모, "인지과학" 성균관대학교출판부 2009

      6 홍성사, "순서와 위상구조의 관계" 10 (10): 19-32, 1997

      7 현우식, "계산가능성이론 형성에서의 Church's Thesis와 Turing's Thesis" 11 (11): 19-26, 1998

      8 홍영희, "격자론의 기원" 12 (12): 15-23, 1999

      9 미국립연구회의, "“인지과학,” 과학과 기술" 대한교과서 1985

      10 Marr, D, "Vision" W. H. Feeman and Company 1982

      1 현우식, "튜링의 기계주의에 대한 괴델의 비평" 한국수학사학회 17 (17): 27-36, 2004

      2 Newell, A, "통합인지이론(Unified Theory of Cognition)" 아카넷 2002

      3 한광희, "인지과학:마음·언어·기계" 학지사 2000

      4 이정민, "인지과학" 태학사 2001

      5 이정모, "인지과학" 성균관대학교출판부 2009

      6 홍성사, "순서와 위상구조의 관계" 10 (10): 19-32, 1997

      7 현우식, "계산가능성이론 형성에서의 Church's Thesis와 Turing's Thesis" 11 (11): 19-26, 1998

      8 홍영희, "격자론의 기원" 12 (12): 15-23, 1999

      9 미국립연구회의, "“인지과학,” 과학과 기술" 대한교과서 1985

      10 Marr, D, "Vision" W. H. Feeman and Company 1982

      11 Chaitin, G, "Thinking about Gödel and Turing" World Scientific 2007

      12 Herken, R, "The Universal Turing Machine: A Half-Century Survey" Springer-Verlag 1995

      13 Goertzel, B, "The Structure of Intelligence: A New Mathematical Model of Mind" Springer-Verlag 1993

      14 Aspray, W, "The Mathematical Reception of the Modern Computer: John von Neumann and the Institute for Advanced Study Computer. In Studies in the History of Mathematics" The Mathematical Association of America 1987

      15 Penrose, R, "The Large, the Small and the Human Mind" Cambridge University Press 1997

      16 Blaha, S, "The Equivalence of Elementary Particle Theories and Computer Languages: Quantum Computers, Turing Machines, Standard Model, Super String Theory, and a Proof that Gödel's Theorem Implies Nature Must be Quantum"

      17 Gödel, K, "Some Remarks on the Undecidability Results(1972). In Collected Works" Oxford University Press 1990

      18 Gödel, K, "Some Basic Theorems on the Foundations of Mathematics and Their Implications(1951). In Collected Works" Oxford University Press 1995

      19 Dunn, J, "Quantum Logic as Motivated by Quantum Computing" 70 (70): 353-359, 2005

      20 Norman, D, "Perspectives on Cognitive Science" Ablex Publishing Corporation 1981

      21 McClelland, J, "Parallel Distributed Processing" The MIT Press 1986

      22 Penrose, R, "On the Physics and Mathematics of Thought. In The Universal Turing Machine: A Half-Century Survey" Springer-Verlag 1995

      23 Smolensky, P, "Mathematical Perspectives on Neural Networks" Lawrence Erlabaum Associates 1996

      24 McCarthy, J, "Mathematical Logic in Artificial Intelligence. In Artificial Intelligence Debate: False Starts, Real Foundations" The MIT Press 1990

      25 Davis, M, "Mathematical Logic and the Origin of Modern Computers. In Studies in the History of Mathematics" The Mathematical Association of America 1987

      26 Davis, M, "Influences of Mathematical Logic on Computer Science. In The Universal Turing Machine: A Half-Century Survey" Springer-Verlag 1995

      27 Hofstadter, D, "Gödel, Escher, Bach: An Eternal Golden Braid" Basic Books 1979

      28 현우식, "Gödel's Disjunctive Conclusion" 13 (13): 137-141, 2000

      29 Posner, I, "Foundations of Cognitive Science" The MIT Press 1989

      30 홍성사, "Extensions and Mathematical Extensions. In: 한태동교수 고희기념논문집" 1995

      31 Beeson, M, "Computerizing Mathematics: Logic and Computation. In The Universal Turing Machine: A Half-Century Survey" Springer-Verlag 1995

      32 Franklin, S, "Computation by Discrete Neural Nets. In Mathematical Perspectives on Neural Networks" Lawrence Erlabaum Associates 1996

      33 홍성사, "Categorical Topology의 역사" 10 (10): 11-23, 1997

      34 Arbib, M, "Brains, Machines, and Mathematics" Springer-Verlag 1987

      35 Graubard, S, "Artificial Intelligence Debate: False Starts, Real Foundations" The MIT Press 1990

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2026 평가예정 재인증평가 신청대상 (재인증)
      2020-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2017-01-01 평가 등재학술지 유지 (계속평가) KCI등재
      2013-06-07 학술지명변경 한글명 : 한국수학사학회지 -> 한국수학사학회지
      외국어명 : The Korea Journal for History of Mathematic -> Journal for History of Mathematics
      KCI등재
      2013-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2010-06-09 학술지명변경 한글명 : 한국수학사학회지 -> 한국수학사학회지
      외국어명 : Historia Mathematica -> The Korea Journal for History of Mathematic
      KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2005-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2004-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2002-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.19 0.19 0.23
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.23 0.21 0.422 0.05
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼