RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      상자그림을 이용한 특허 빅데이터의 시각화 = Visualization of Patent Big Data using Box Plot

      한글로보기

      https://www.riss.kr/link?id=A103021917

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Statistical inference is necessary to understand the population parameters using sample data from target population, because it is difficult to obtain all data of population. In big data environment, we can get the enormous collection of data close to population. So we need to summarize the big data instead of estimation or hypothesis testing for understanding population. Visualization is one of approaches to data summary. In many real domains, graphical results are more efficient than descriptive statistics such as mean, variance, or median because we are easy to understand the graph or figure. In this paper, we propose a visualization approach to know the property of big data using box plot. This contributes to diverse big data analyses in patent big domain such as forecasting and management of technology.
      번역하기

      Statistical inference is necessary to understand the population parameters using sample data from target population, because it is difficult to obtain all data of population. In big data environment, we can get the enormous collection of data close to...

      Statistical inference is necessary to understand the population parameters using sample data from target population, because it is difficult to obtain all data of population. In big data environment, we can get the enormous collection of data close to population. So we need to summarize the big data instead of estimation or hypothesis testing for understanding population. Visualization is one of approaches to data summary. In many real domains, graphical results are more efficient than descriptive statistics such as mean, variance, or median because we are easy to understand the graph or figure. In this paper, we propose a visualization approach to know the property of big data using box plot. This contributes to diverse big data analyses in patent big domain such as forecasting and management of technology.

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼