RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      순차적 자료융합방법을 이용한 은행고객의 가치예측 = Sequential Data Fusion Approaches for Predicting the Value of Bank Customers

      한글로보기

      https://www.riss.kr/link?id=A104004203

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      This study applies data fusion approach to predict the value of bank customers. The three approaches applied include the Euclidean distance-based fusion, the Mahalanobis distance-based fusion, and the regression/logit-based fusion. The data consist of 1,000 customers with their activities associated with various accounts, demographic variables, and class segmentation for the fiscal year of 2006 and 2007. For the comparison of model performance, MAD and the paired samples t-test are used for the 10 numeric variables, while correct classification ratio and the McNemar test are used for the three categorical variables. The experiment results show that with respect to MAD, model performance is superior in the order of the Euclidean model, the Mahalanobis model, and the regression model. Correct classification ratio is best for the logit model, and the Euclidean model and the Mahalanobis model follow the next. The contribution of the current study is that we attempt to extend the scope of data fusion into sequential data fusion, which is necessary for the systematic data accumulation and analysis under CRM strategy.
      번역하기

      This study applies data fusion approach to predict the value of bank customers. The three approaches applied include the Euclidean distance-based fusion, the Mahalanobis distance-based fusion, and the regression/logit-based fusion. The data consist o...

      This study applies data fusion approach to predict the value of bank customers. The three approaches applied include the Euclidean distance-based fusion, the Mahalanobis distance-based fusion, and the regression/logit-based fusion. The data consist of 1,000 customers with their activities associated with various accounts, demographic variables, and class segmentation for the fiscal year of 2006 and 2007. For the comparison of model performance, MAD and the paired samples t-test are used for the 10 numeric variables, while correct classification ratio and the McNemar test are used for the three categorical variables. The experiment results show that with respect to MAD, model performance is superior in the order of the Euclidean model, the Mahalanobis model, and the regression model. Correct classification ratio is best for the logit model, and the Euclidean model and the Mahalanobis model follow the next. The contribution of the current study is that we attempt to extend the scope of data fusion into sequential data fusion, which is necessary for the systematic data accumulation and analysis under CRM strategy.

      더보기

      참고문헌 (Reference)

      1 김성호, "자료융합방법의 성과에 대체수준이 미치는 영향에 관한 연구:몬테카를로 시뮬레이션 접근방법" 한국경영과학회 19 (19): 129-141, 2002

      2 김성호, "마할라노비스 거리를 이용한 자료융합전략의 성과측정" 한국경영학회 34 (34): 1853-1867, 2005

      3 Gronroos, C., "Value-driven Relational Marketing: from Products to Resources and Competencies" 13 (13): 407-419, 1997

      4 Gummesson, E., "Relationship Marketing and Imaginary Organizations: a Synthesis" 30 (30): 31-44, 1996

      5 Kromrey, J.D., "Nonrandomly Missing Data in Multiple Regression: An Empirical Comparison of Common Missing-Data Treatments" 54 (54): 573-593, 1994

      6 Kalawani, M.U., "Long-term Manufacturer-Supplier Relationships: Do They Pay Off for Supplier Firms" 59 : 1-16, 1995

      7 Gebert, H., "Knowledge-enabled Customer Relationship Management: Integrating Customer Relationship Management and Knowledge Management Concepts" 7 (7): 107-123, 2003

      8 Xu, M., "Gaining Customer Knowledge through Analytical CRM" 105 (105): 955-971, 2005

      9 Kamakura, W.A., "Factor Analysis and Missing Data" 37 : 490-498, 2000

      10 Cho, S., "Exploring Artificial Intelligence-based Data Fusion for Conjoint Analysis" 24 (24): 287-294, 2003

      1 김성호, "자료융합방법의 성과에 대체수준이 미치는 영향에 관한 연구:몬테카를로 시뮬레이션 접근방법" 한국경영과학회 19 (19): 129-141, 2002

      2 김성호, "마할라노비스 거리를 이용한 자료융합전략의 성과측정" 한국경영학회 34 (34): 1853-1867, 2005

      3 Gronroos, C., "Value-driven Relational Marketing: from Products to Resources and Competencies" 13 (13): 407-419, 1997

      4 Gummesson, E., "Relationship Marketing and Imaginary Organizations: a Synthesis" 30 (30): 31-44, 1996

      5 Kromrey, J.D., "Nonrandomly Missing Data in Multiple Regression: An Empirical Comparison of Common Missing-Data Treatments" 54 (54): 573-593, 1994

      6 Kalawani, M.U., "Long-term Manufacturer-Supplier Relationships: Do They Pay Off for Supplier Firms" 59 : 1-16, 1995

      7 Gebert, H., "Knowledge-enabled Customer Relationship Management: Integrating Customer Relationship Management and Knowledge Management Concepts" 7 (7): 107-123, 2003

      8 Xu, M., "Gaining Customer Knowledge through Analytical CRM" 105 (105): 955-971, 2005

      9 Kamakura, W.A., "Factor Analysis and Missing Data" 37 : 490-498, 2000

      10 Cho, S., "Exploring Artificial Intelligence-based Data Fusion for Conjoint Analysis" 24 (24): 287-294, 2003

      11 Berry, M.A., "Data Mining Techniques" Wiley 2003

      12 Baker, K., "Data Fusion: An Appraisal and Experimental Evaluation" 39 (39): 227-271, 1997

      13 Baker, K., "Data Fusion: An Appraisal and Experimental Evaluation" 31 (31): 153-212, 1989

      14 Gurau, C., "Customer-Centric Strategic Planning: Integrating CRM" 4 : 199-214, 2003

      15 Bose, R., "Customer Relationship Management: Key Components for IT Success" 102 (102): 89-97, 2002

      16 Zineldin, M., "Beyond Relationship Marketing: Technologicalship Marketing" 18 (18): 9-23, 2000

      17 Landerman, L.R., "An Empirical Evaluation of the Predictive Mean matching Method for Imputing Missing Values" 26 (26): 3-33, 1997

      18 Baxter, N., "Agent-based Modeling - Intelligent Customer Relationship Management" 21 (21): 126-136, 2003

      19 Kim, J.S., "A Preliminary Study on Common Variable Selection Strategy in Data Fusion" 31 : 716-720, 2004

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2026 평가예정 재인증평가 신청대상 (재인증)
      2020-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2017-01-01 평가 등재학술지 유지 (계속평가) KCI등재
      2013-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-08-11 학술지명변경 한글명 : 한국보전경영학회지 -> 한국경영공학회지 KCI등재
      2006-07-21 학회명변경 한글명 : 한국보전경영학회 -> 한국경영공학회
      영문명 : 미등록 -> Korea Management Engineers Society
      KCI등재
      2005-03-22 학술지등록 한글명 : 한국보전경영학회지
      외국어명 : 미등록
      KCI등재
      2005-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2004-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2002-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.62 0.62 0.62
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.57 0.48 0.749 0.23
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼