Big data analysis easily identifies statistical patterns and trends. However, relying solely on big data analysis poses challenges in validating the profound meanings and causal relationships underlying the data. On the other hand, qualitative analysi...
Big data analysis easily identifies statistical patterns and trends. However, relying solely on big data analysis poses challenges in validating the profound meanings and causal relationships underlying the data. On the other hand, qualitative analysis such as netnography requires substantial time and effort but offers direct insights into consumer opinions and experiences, facilitating a deeper understanding of causality and providing in-depth insights. To provide accurate interpretation and in-depth insight into big data analysis results, this study proposes the BIGNET integrated analysis model that performs qualitative analysis, utilizing the patterns and singularities of the data considered in big data analysis. To verify the validity and practicality of the study, an empirical study was conducted targeting Korea's representative online cloth diaper consumer community, thereby confirming that the proposed integrated analysis model can identify the cause of the phenomena appearing in the online consumer community. This study is expected to effectively explain many aspects of online consumer behavior that can easily be misinterpreted or misunderstood based on big data analysis results alone.