A triple-probe channel type chemosensor based on an $NO_2S_2$-macrocycle functionalized with phenyltricyanovinyl group was synthesized and its sensing characteristics were examined. The pink-red solution of L changed selectively to pale yellow upon ad...
A triple-probe channel type chemosensor based on an $NO_2S_2$-macrocycle functionalized with phenyltricyanovinyl group was synthesized and its sensing characteristics were examined. The pink-red solution of L changed selectively to pale yellow upon addition of $Hg^{2+}$. The selective fluorometric response of L to all the tested metal ions was studied. The results showed that a large enhancement of the fluorescence of L was observed only in the case of $Hg^{2+}$. In addition, L showed large anodic shift (~ 0.3 V) for the addition of excess $Hg^{2+}$. Through above three observed results by the different techniques, we confirmed that the proposed chemosensor acts as the multiple-probe channel sensing material. The crystal structure of mercury(II) nitrate complexs of L which shows a 1-D polymer network with a formula $[Hg_2(L)_2(NO_3)_2({\mu}-NO_3)_2]_n$ was also reported.