Zirconium-doped $Li_{1.1}Co_{1-x}Zr_xO_2(0{\leq}x{\leq}0.05)$ powders as cathode materials for lithium ion batteries were synthesized using an ultrasonic spray pyrolysis method. Cyclic voltammetry and cyclic stability tests were performed, and the cha...
Zirconium-doped $Li_{1.1}Co_{1-x}Zr_xO_2(0{\leq}x{\leq}0.05)$ powders as cathode materials for lithium ion batteries were synthesized using an ultrasonic spray pyrolysis method. Cyclic voltammetry and cyclic stability tests were performed, and the changes of microstructure were observed. The solubility limit of zirconium into $Li_{1.1}CoO_2$ was less than 5 mol%, and monoclinic $Li_2ZrO_3$ phase was formed above the limit. The Zr-doping suppressed the grain growth and increased the lattice parameters of the hexagonal $LiCoO_2$ phase. The Zr-dopiong of 1mol% resulted in the best cyclic performance in the range of $3.0{\sim}4.3V$ at 1C rate (140 mA/g); the initial discharge capacity decreased from 158 mAh/g to 60 mAh/g in the undoped powder, while from 154 mAh/g to 135 mAh/g in the Zr-doped powder of 1 mol% after 30 cycles. The excellent cycle stability of Zr-doped powder was due to the low polarization during chargedischarge processes which resulted from the delayed collapse of the crystal structure of the active materials with Zr-doping.