RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      고유진동수와 모드의 민감도를 계산하기 위한 대수적 방법 = Algebraic Method for Computation of Natural Frequency and Mode Shape Sensitivities

      한글로보기

      https://www.riss.kr/link?id=A109413026

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      This paper presents an efficient numerical method for the computation of eigenpair derivatives for a real symmetric eigenvalue problem with distinct and multiple eigenvalues. The method has a very simple algorithm and gives an exact solution. Furthermore, it saves computer sotrage and CPU time. The algorithm preserves not only the symmetricity but also the band width of the matrices, allowing efficient computer storage and solution techniques. Results from the proposed method for calculating the eigenpair derivatives are compared with those from Rudisill and Chu's method and Nelson's method which is known efficient one in the case of distinct natural frequencies. As an example to demonstrate the efficiency of the proposed method in the case of distinct eigenvalues, a cantilever plate is considered. The design parameter of the cantilever plate is its thickness. For the eigenvalue problem with multiple natural frequencies, the adjacent eigenvectors are used in the algebraic equation as side conditions, lying adjacent to the multiplicity of multiple natural frequency distinct eigenvalues, which appear when design parameter varies. A cantilever beam is used to demonstrate the efficiency of the proposed method in the case of multiple natural frequencies. Results form the proposed method for calculating the eigenpair derivatives are compared with those from Dailey's method(an amendation of Ojalvo's work) which finds the exact eigenvector derivatives. The design parameter of the cantilever beam is its height. Data is presented showing the amount of CPU time used to compute the first ten eigenpair derivatives by each method. It is important to note that the numerical stability of the proposed method is proved.
      번역하기

      This paper presents an efficient numerical method for the computation of eigenpair derivatives for a real symmetric eigenvalue problem with distinct and multiple eigenvalues. The method has a very simple algorithm and gives an exact solution. Furtherm...

      This paper presents an efficient numerical method for the computation of eigenpair derivatives for a real symmetric eigenvalue problem with distinct and multiple eigenvalues. The method has a very simple algorithm and gives an exact solution. Furthermore, it saves computer sotrage and CPU time. The algorithm preserves not only the symmetricity but also the band width of the matrices, allowing efficient computer storage and solution techniques. Results from the proposed method for calculating the eigenpair derivatives are compared with those from Rudisill and Chu's method and Nelson's method which is known efficient one in the case of distinct natural frequencies. As an example to demonstrate the efficiency of the proposed method in the case of distinct eigenvalues, a cantilever plate is considered. The design parameter of the cantilever plate is its thickness. For the eigenvalue problem with multiple natural frequencies, the adjacent eigenvectors are used in the algebraic equation as side conditions, lying adjacent to the multiplicity of multiple natural frequency distinct eigenvalues, which appear when design parameter varies. A cantilever beam is used to demonstrate the efficiency of the proposed method in the case of multiple natural frequencies. Results form the proposed method for calculating the eigenpair derivatives are compared with those from Dailey's method(an amendation of Ojalvo's work) which finds the exact eigenvector derivatives. The design parameter of the cantilever beam is its height. Data is presented showing the amount of CPU time used to compute the first ten eigenpair derivatives by each method. It is important to note that the numerical stability of the proposed method is proved.

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼