RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      Multipole expansion of Green’s function for guided waves in a transversely isotropic plate

      한글로보기

      https://www.riss.kr/link?id=A103790923

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      The multipole expansion of Green’s function in a transversely isotropic plate is derived based on the eigenfunction expansion method.
      For the derivation, Green’s function is expressed in a bilinear form composed of the regular and singular Lamb-type (or shear-horizontal)wave eigenfunctions. The specific form of the derived Green’s function facilitates the handling of general scattering problems in an elasticplate when numerical methods such as the methods of the null-field integral equations are employed. In the derivation, the integraltransform of an arbitrary guided wave field is first constructed by the Lamb-type and shear horizontal wave eigenfunctions that work asthe kernel functions. After showing that the thickness-dependent parts of the eigenfunctions are orthogonal to each other in the transformedspace, Green’s function is explicitly derived by using the orthogonality. As an application of the derived Green’s function, a scatteringproblem is solved by the transition matrix method.
      번역하기

      The multipole expansion of Green’s function in a transversely isotropic plate is derived based on the eigenfunction expansion method. For the derivation, Green’s function is expressed in a bilinear form composed of the regular and singular Lamb-ty...

      The multipole expansion of Green’s function in a transversely isotropic plate is derived based on the eigenfunction expansion method.
      For the derivation, Green’s function is expressed in a bilinear form composed of the regular and singular Lamb-type (or shear-horizontal)wave eigenfunctions. The specific form of the derived Green’s function facilitates the handling of general scattering problems in an elasticplate when numerical methods such as the methods of the null-field integral equations are employed. In the derivation, the integraltransform of an arbitrary guided wave field is first constructed by the Lamb-type and shear horizontal wave eigenfunctions that work asthe kernel functions. After showing that the thickness-dependent parts of the eigenfunctions are orthogonal to each other in the transformedspace, Green’s function is explicitly derived by using the orthogonality. As an application of the derived Green’s function, a scatteringproblem is solved by the transition matrix method.

      더보기

      참고문헌 (Reference)

      1 W. C. Chew, "Waves and fields in inhomogeneous media" van Nostrand Reinhold 1990

      2 J. D. Achenbach, "Wave motion in an isotropic elastic layer generated by a time-harmonic point load of arbitrary direction" 106 : 83-90, 1999

      3 F. Santosa, "Transient axially asymmetric response of an elastic plate" 11 : 271-295, 1989

      4 H. Bai, "Threedimensional steady state Green function for a layered isotropic plate" 269 : 251-271, 2004

      5 J. Miklowitz, "The theory of elastic waves and waveguides" North Holland Publishing Company 1978

      6 M. A. Denolle, "Solving the surface‐wave eigenproblem with chebyshev spectral collocation" 102 : 1214-1223, 2012

      7 M. I. Mishchenko, "Scattering, absorption, and emission of light by small particles" Cambridge University Press 2002

      8 W. M. Lee, "Scattering of flexural wave in a thin plate with multiple circular inclusions by using the nullfield integral equation approach" 329 : 1042-1061, 2010

      9 V. Varatharajulu, "Scattering matrix for elastic waves. I. Theory" 60 : 556-566, 1976

      10 N. Vasudevan, "Response of an elastic plate to localized transient sources" 52 : 356-362, 1985

      1 W. C. Chew, "Waves and fields in inhomogeneous media" van Nostrand Reinhold 1990

      2 J. D. Achenbach, "Wave motion in an isotropic elastic layer generated by a time-harmonic point load of arbitrary direction" 106 : 83-90, 1999

      3 F. Santosa, "Transient axially asymmetric response of an elastic plate" 11 : 271-295, 1989

      4 H. Bai, "Threedimensional steady state Green function for a layered isotropic plate" 269 : 251-271, 2004

      5 J. Miklowitz, "The theory of elastic waves and waveguides" North Holland Publishing Company 1978

      6 M. A. Denolle, "Solving the surface‐wave eigenproblem with chebyshev spectral collocation" 102 : 1214-1223, 2012

      7 M. I. Mishchenko, "Scattering, absorption, and emission of light by small particles" Cambridge University Press 2002

      8 W. M. Lee, "Scattering of flexural wave in a thin plate with multiple circular inclusions by using the nullfield integral equation approach" 329 : 1042-1061, 2010

      9 V. Varatharajulu, "Scattering matrix for elastic waves. I. Theory" 60 : 556-566, 1976

      10 N. Vasudevan, "Response of an elastic plate to localized transient sources" 52 : 356-362, 1985

      11 R. H. Lyon, "Response of an elastic plate to localized driving forces" 27 : 259-265, 1955

      12 K. Aki, "Quantitative seismology" University Science Books 2002

      13 A. Sommerfeld, "Partial differential equations in physics" Academic Press 1949

      14 B. B. Guzina, "On the analysis of wave motions in a multi-layered solid" 54 : 13-37, 2001

      15 M. Tan, "Normal mode variational method for two- and three-dimensional acoustic scattering in an isotropic plate" 857-861, 1980

      16 P. A. Martin, "Multiple scattering: Interaction of timeharmonic waves with N obstacles" Cambridge University Press 2006

      17 N. Baddour, "Multidimensional wave field signal theory:Mathematical foundations" 1 : 2011

      18 L. R. F. Rose, "Mindlin plate theory for damage detection: Source solutions" 116 : 154-171, 2004

      19 P. M. C. Morse, "Methods of theoretical physics" McGraw-Hill 1953

      20 P. Waterman, "Matrix theory of elastic wave scattering" 60 : 567-580, 1976

      21 P. C. Waterman, "Matrix formulation of electromagnetic scattering" 53 : 805-812, 1965

      22 A. Doicu, "Light scattering by systems of particles - Null-field method with discrete sources: Theory and programs" Springer 2006

      23 J. -T. Chen, "Interaction of water waves with vertical cylinders using null-field integral equations" 31 : 101-110, 2009

      24 T. Wriedt, "Generalized multipole techniques for electromagnetic and light scattering" Elsevier Science 1999

      25 G. R. Liu, "Elastic waves in anisotropic laminates" Taylor & Francis 2001

      26 C. Tai, "Dyadic Green's functions in electromagnetic theory" Intext Educational Publishers 1971

      27 M. I. Mishchenko, "Comprehensive T-matrix reference database: A 2012–2013 update" 123 : 145-152, 2013

      28 R. L. Weaver, "Axisymmetric elastic waves excited by a point source in a plate" 49 : 821-836, 1982

      29 Y. Hisada, "An efficient method for computing Green's functions for a layered half-space with sources and receivers at close depths" 84 : 1456-1472, 1994

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2012-11-05 학술지명변경 한글명 : 대한기계학회 영문 논문집 -> Journal of Mechanical Science and Technology KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-19 학술지명변경 한글명 : KSME International Journal -> 대한기계학회 영문 논문집
      외국어명 : KSME International Journal -> Journal of Mechanical Science and Technology
      KCI등재
      2006-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2004-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2001-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1998-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 1.04 0.51 0.84
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.74 0.66 0.369 0.12
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼