본 논문에서는 음성과 자연언어의 통합처리를 위한 효과적인 병렬계산모델을 제안한다. 음소모델은 연속 Hidden Markov Model(HMM)에 기반을 둔 문맥종속형 음소를 사용하며, 언어모델은 지식베이...
http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
국문 초록 (Abstract)
본 논문에서는 음성과 자연언어의 통합처리를 위한 효과적인 병렬계산모델을 제안한다. 음소모델은 연속 Hidden Markov Model(HMM)에 기반을 둔 문맥종속형 음소를 사용하며, 언어모델은 지식베이...
본 논문에서는 음성과 자연언어의 통합처리를 위한 효과적인 병렬계산모델을 제안한다. 음소모델은 연속 Hidden Markov Model(HMM)에 기반을 둔 문맥종속형 음소를 사용하며, 언어모델은 지식베이스를 기반으로 한다. 또한 지식베이스를 구성하기 위해 계층구조의 semantic network과 병렬 marker-passion을 추론 메키니즘으로 쓰는 memory-based parsing 기술을 사용한다. 본 연구의 병렬 음성인식 알고리즘은 분산메모리 MIMD 구조의 다중 Transputer 시스템을 이용하여 구현되었다. 실험결과, 본 연구의 지식베이스 기반 음성인식 시스템의 인식률이 word network 기반 음성인식 시스템보다 높게 나타났으며 code-phoneme 통계정보를 활용하여 인식성능의 향상도 얻을 수 있었다. 또한, speedup 관련 실험들을 통하여 병렬 음성인식 시스템의 실시간 구현 가능성을 확인하였다.
다국어 초록 (Multilingual Abstract)
The paper presents a massrvely parallel computational model for the efficient integration of speech and natural language understanding. The phoneme model is based on continuous Hidden Markov Model with context dependent phonemes, and the language mode...
The paper presents a massrvely parallel computational model for the efficient integration of speech and natural language understanding. The phoneme model is based on continuous Hidden Markov Model with context dependent phonemes, and the language model is based on a knowledge base approach. To construct the knowledge base, we adopt a hierarchically-structured semantic network and a memory-based parsing technique that employs parallel market-passing as an inference mechanism. Our parallel speech recongnition algorithm is implemented in a multi-Transputer system using distributed-memory MLMD multiprocessors.
Experimental results show that the parallel speech recognition system performs better in recongnition accyracy than a word network based speech recongnition system. The tecognition accuracy is further improved by applying code-phoneme statisics. Besides, speedp experiments demonstrate the possibility of constructing a realtime parallel speech recongnition system.
목차 (Table of Contents)