RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      형판정합기반 영상 정규화를 통한 고유얼굴(Eigenface)알고리즘 성능개선 방법 = An Improvement of Eigenface Algorithm based on Image Normalization by Template Matching

      한글로보기

      https://www.riss.kr/link?id=A45009074

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      A new approach for face recognition is proposed. Our method adopts the Eigenface algorithm as the main classifier, but improves performance by normalizing input images based on template matching technique. Firstly, the two eye regions are evaluated by template matching with a set of ordinary eye templates. The scale and rotation factors are estimated based on the distance and angle between left and right eyes, and we generate a normalized face of the input image, and finally, it is provided as the input of the Eigenface algorithm. Since, Eigenface is a good recognition method but is vulnerable to image variations such as rotation and illumination conditions, our face normalization approach could be very effective.
      번역하기

      A new approach for face recognition is proposed. Our method adopts the Eigenface algorithm as the main classifier, but improves performance by normalizing input images based on template matching technique. Firstly, the two eye regions are evaluated by...

      A new approach for face recognition is proposed. Our method adopts the Eigenface algorithm as the main classifier, but improves performance by normalizing input images based on template matching technique. Firstly, the two eye regions are evaluated by template matching with a set of ordinary eye templates. The scale and rotation factors are estimated based on the distance and angle between left and right eyes, and we generate a normalized face of the input image, and finally, it is provided as the input of the Eigenface algorithm. Since, Eigenface is a good recognition method but is vulnerable to image variations such as rotation and illumination conditions, our face normalization approach could be very effective.

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼