1 J. X. LU, Springer Science and Business Media LLC 10 (10): 111-120, 1999
2 S.F.S. Shirazi, 2015
3 L. Olmos, 2009
4 F.J. O’Brien, 15 (15): 3-, 2007
5 L.E. Murr, 2012
6 Xiaojian Wang, "Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review" Elsevier BV 83 : 127-141, 2016
7 J. Jakubowicz, "Titanium foam made with saccharose as a space holder" Springer Science and Business Media LLC 20 (20): 1137-1141, 2013
8 Joseph R. Woodard, "The mechanical properties and osteoconductivity of hydroxyapatite bone scaffolds with multi-scale porosity" Elsevier BV 28 (28): 45-54, 2007
9 E. Arzt, "The influence of an increasing particle coordination on the densification of spherical powders" Elsevier BV 30 (30): 1883-1890, 1982
10 Ciara M. Murphy, "The effect of mean pore size on cell attachment, proliferation and migration in collagen–glycosaminoglycan scaffolds for bone tissue engineering" Elsevier BV 31 (31): 461-466, 2010
1 J. X. LU, Springer Science and Business Media LLC 10 (10): 111-120, 1999
2 S.F.S. Shirazi, 2015
3 L. Olmos, 2009
4 F.J. O’Brien, 15 (15): 3-, 2007
5 L.E. Murr, 2012
6 Xiaojian Wang, "Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review" Elsevier BV 83 : 127-141, 2016
7 J. Jakubowicz, "Titanium foam made with saccharose as a space holder" Springer Science and Business Media LLC 20 (20): 1137-1141, 2013
8 Joseph R. Woodard, "The mechanical properties and osteoconductivity of hydroxyapatite bone scaffolds with multi-scale porosity" Elsevier BV 28 (28): 45-54, 2007
9 E. Arzt, "The influence of an increasing particle coordination on the densification of spherical powders" Elsevier BV 30 (30): 1883-1890, 1982
10 Ciara M. Murphy, "The effect of mean pore size on cell attachment, proliferation and migration in collagen–glycosaminoglycan scaffolds for bone tissue engineering" Elsevier BV 31 (31): 461-466, 2010
11 K. Kieswetter, "The Role of Implant Surface Characteristics in the Healing of Bone" SAGE Publications 7 (7): 329-345, 2016
12 S.A. Saltykov, "Stereometrische Metallographie Metallurgizdat" VEB 1974
13 Roman A. Perez, "Role of pore size and morphology in musculo-skeletal tissue regeneration" Elsevier BV 61 : 922-939, 2016
14 D. Bouvard, "Relation between percolation and particle coordination in binary powder mixtures" Elsevier BV 39 (39): 3083-3090, 1991
15 Y. Torres, "Processing, characterization and biological testing of porous titanium obtained by space-holder technique" Springer Science and Business Media LLC 47 (47): 6565-6576, 2012
16 Jose Luis Cabezas-Villa, "Processing and properties of highly porous Ti6Al4V mimicking human bones" Cambridge University Press (CUP) 33 (33): 650-661, 2018
17 H. Montazerian, "Porous scaffold internal architecture design based on minimal surfaces: A compromise between permeability and elastic properties" Elsevier BV 126 : 98-114, 2017
18 A. Bansiddhi, "Porous NiTi for bone implants: A review" Elsevier BV 4 (4): 773-782, 2008
19 V KARAGEORGIOU, "Porosity of 3D biomaterial scaffolds and osteogenesis" Elsevier BV 26 (26): 5474-5491, 2005
20 M. D. M. Innocentini, "Permeability of porous gelcast scaffolds for bone tissue engineering" Springer Science and Business Media LLC 17 (17): 615-627, 2010
21 M.R. Dias, "Permeability analysis of scaffolds for bone tissue engineering" Elsevier BV 45 (45): 938-944, 2012
22 Michcle J. Grimm, "Measurements of permeability in human calcaneal trabecular bone" Elsevier BV 30 (30): 743-745, 1997
23 Josefina Ballarre, "Improving the osteointegration and bone–implant interface by incorporation of bioactive particles in sol–gel coatings of stainless steel implants" Elsevier BV 6 (6): 1601-1609, 2010
24 Z. Zhang, "Hierarchical tailoring of strut architecture to control permeability of additive manufactured titanium implants" Elsevier BV 33 (33): 4055-4062, 2013
25 Budi Arifvianto, "Fabrication of Metallic Biomedical Scaffolds with the Space Holder Method: A Review" MDPI AG 7 (7): 3588-3622, 2014
26 Brett Russell Levine, "Experimental and clinical performance of porous tantalum in orthopedic surgery" Elsevier BV 27 (27): 4671-4681, 2006
27 Yadir Torres, "Development of porous titanium for biomedical applications: A comparison between loose sintering and space-holder techniques" Elsevier BV 37 : 148-155, 2014
28 Lucía Reig, "Development of porous Ti6Al4V samples by microsphere sintering" Elsevier BV 212 (212): 3-7, 2012
29 Félix A. España, "Design and fabrication of CoCrMo alloy based novel structures for load bearing implants using laser engineered net shaping" Elsevier BV 30 (30): 50-57, 2010
30 E. A. Nauman, "Dependence of Intertrabecular Permeability on Flow Direction and Anatomic Site" Springer Science and Business Media LLC 27 (27): 517-524, 1999
31 A. Marmottant, "Coordination measurements in compacted NaCl irregular powders using X-ray microtomography" Elsevier BV 28 (28): 2441-2449, 2008
32 X.Y. Cheng, "Compression deformation behavior of Ti–6Al–4V alloy with cellular structures fabricated by electron beam melting" Elsevier BV 16 : 153-162, 2012
33 D GRIFFON, "Chitosan scaffolds: Interconnective pore size and cartilage engineering" Elsevier BV 2 (2): 313-320, 2006
34 Luis Olmos, "Characterization of the swelling during sintering of uniaxially pressed copper powders by in situ X-ray microtomography" Springer Science and Business Media LLC 49 (49): 4225-4235, 2014
35 R SINGH, "Characterization of the structure and permeability of titanium foams for spinal fusion devices" Elsevier BV 5 (5): 477-487, 2009
36 R. Singh, "Characterization of the deformation behavior of intermediate porosity interconnected Ti foams using micro-computed tomography and direct finite element modeling" Elsevier BV 6 (6): 2342-2351, 2010
37 L.J. Gibson, "Cellular Solids: Structure and Properties" Cambridge University Press 175-, 1999
38 M.C. Varley, "Cell structure, stiffness and permeability of freeze-dried collagen scaffolds in dry and hydrated states" Elsevier BV 33 : 166-175, 2016
39 H Matsuno, "Biocompatibility and osteogenesis of refractory metal implants, titanium, hafnium, niobium, tantalum and rhenium" Elsevier BV 22 (22): 1253-1262, 2001
40 Seyed Mohammad Kalantari, "Biocompatibility and compressive properties of Ti-6Al-4V scaffolds having Mg element" Elsevier BV 48 : 183-191, 2015
41 Iván Farias, "Analyzing the compressive behavior of porous Ti6Al4V by X-ray microtomography" FapUNIFESP (SciELO) 20 (20): 1511-1517, 2017
42 Luis Olmos, "Analysing the sintering of heterogeneous powder structures by in situ microtomography" Informa UK Limited 89 (89): 2949-2965, 2009
43 Qizhi Z. Chen, "45S5 Bioglass®-derived glass–ceramic scaffolds for bone tissue engineering" Elsevier BV 27 (27): 2414-2425, 2006
44 A. Vagnon, "3D statistical analysis of a copper powder sintering observed in situ by synchrotron microtomography" Elsevier BV 56 (56): 1084-1093, 2008
45 C.L. Lin, "3D characterization and analysis of particle shape using X-ray microtomography (XMT)" Elsevier BV 154 (154): 61-69, 2005