We propose a parametric blind deconvolution method for bi-level images with unknown intensity levels that estimates unknown parameters for point spread functions and images by minimizing a penalized nonlinear least squares objective function based on ...
We propose a parametric blind deconvolution method for bi-level images with unknown intensity levels that estimates unknown parameters for point spread functions and images by minimizing a penalized nonlinear least squares objective function based on normalized correlation coefficients and two regularization functions. Unlike conventional methods, the proposed method does not require knowledge about true intensity values. Moreover, the objective function of the proposed method can be effectively minimized, since it has the special structure of nonlinear least squares. We demonstrate the effectiveness of the proposed method through simulations and experiments.