RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      개선된 추천시스템을 이용한 전자상거래시스템 설계 및 구현 = Design and Implementation of e-Commerce Applications using Improved Recommender Systems

      한글로보기

      https://www.riss.kr/link?id=A101432657

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      국문 초록 (Abstract)

      인터넷 환경의 급속한 발전과 함께 이를 이용한 전자상거래가 빠르게 증가하고 있다. 증가하는 전자상거래 환경에서 고객에게 필요한 제품을 신속히 제공하고, 제품판매를 증가시킬 수 있는 새로운 전자상거래 시스템의 필요성이 점차 커지고 있다. 이러한 필요성에 의해서 최근에 추천시스템에 대한 많은 연구가 이루어지고 있다. 하지만 지금까지의 추천시스템은 고객의 구매데이터가 증가하면 고객에게 추천을 제공하는데 많은 시간이 소요되어 실시간 추천이 어렵다는 큰 단점을 가졌다. 따라서, 이 논문은 전자상거래 시스템의 경쟁력을 높이는 방안으로 협동적 필터링을 이용한 추천시스템을 연구하고, 성능을 개선하기 위해서 추천에 사용되는 데이터를 제품의 대표장르를 이용하여 줄임으로서 추천소요시간을 단축하여 실시간 추천이 가능한 개선된 추천시스템을 제안하고 실험하였다. 또한 개선된 추천시스템을 Enterprise JavaBeans로 구현함으로서 분산환경에서 사용할 수 있는 전자상거래시스템을 설계하여 경쟁력있는 전자상거래 시스템 환경을 제공하고자 한다.
      번역하기

      인터넷 환경의 급속한 발전과 함께 이를 이용한 전자상거래가 빠르게 증가하고 있다. 증가하는 전자상거래 환경에서 고객에게 필요한 제품을 신속히 제공하고, 제품판매를 증가시킬 수 있...

      인터넷 환경의 급속한 발전과 함께 이를 이용한 전자상거래가 빠르게 증가하고 있다. 증가하는 전자상거래 환경에서 고객에게 필요한 제품을 신속히 제공하고, 제품판매를 증가시킬 수 있는 새로운 전자상거래 시스템의 필요성이 점차 커지고 있다. 이러한 필요성에 의해서 최근에 추천시스템에 대한 많은 연구가 이루어지고 있다. 하지만 지금까지의 추천시스템은 고객의 구매데이터가 증가하면 고객에게 추천을 제공하는데 많은 시간이 소요되어 실시간 추천이 어렵다는 큰 단점을 가졌다. 따라서, 이 논문은 전자상거래 시스템의 경쟁력을 높이는 방안으로 협동적 필터링을 이용한 추천시스템을 연구하고, 성능을 개선하기 위해서 추천에 사용되는 데이터를 제품의 대표장르를 이용하여 줄임으로서 추천소요시간을 단축하여 실시간 추천이 가능한 개선된 추천시스템을 제안하고 실험하였다. 또한 개선된 추천시스템을 Enterprise JavaBeans로 구현함으로서 분산환경에서 사용할 수 있는 전자상거래시스템을 설계하여 경쟁력있는 전자상거래 시스템 환경을 제공하고자 한다.

      더보기

      다국어 초록 (Multilingual Abstract)

      With the fast development of Internet environment, e-Commerce is rapidly increasing. n the expanding e-Commerce environment, the need for a new e-Commerce systems what will deliver products to the customer rapidly and increase sales is growing bigger. Recently, these requirements brought many researches on recommender systems. However, until now, those recommender systems have a limit because it takes too much time for recommender systems to give customers the recommendations in real time, if the number of purchase data of customers is large. So this paper concerns on the recommender systems using collaborative filtering as one of the solutions to increase the competitive power. We proposed and experimented the more improved recommender systems which could decrease the data size to shorten the recommending time by using the representative category of the product which customers want to buy. Also, we design and implement a recommender system using Enterprise JavaBeans.
      번역하기

      With the fast development of Internet environment, e-Commerce is rapidly increasing. n the expanding e-Commerce environment, the need for a new e-Commerce systems what will deliver products to the customer rapidly and increase sales is growing bigger....

      With the fast development of Internet environment, e-Commerce is rapidly increasing. n the expanding e-Commerce environment, the need for a new e-Commerce systems what will deliver products to the customer rapidly and increase sales is growing bigger. Recently, these requirements brought many researches on recommender systems. However, until now, those recommender systems have a limit because it takes too much time for recommender systems to give customers the recommendations in real time, if the number of purchase data of customers is large. So this paper concerns on the recommender systems using collaborative filtering as one of the solutions to increase the competitive power. We proposed and experimented the more improved recommender systems which could decrease the data size to shorten the recommending time by using the representative category of the product which customers want to buy. Also, we design and implement a recommender system using Enterprise JavaBeans.

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼