RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCI SCIE SCOPUS

      First-principles study on thermodynamic stability of the hybrid interfacial structure of LiMn<sub>2</sub>O<sub>4</sub> cathode and carbonate electrolyte in Li-ion batteries

      한글로보기

      https://www.riss.kr/link?id=A107454556

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      <P>The solid electrolyte interphase (SEI) of Li-ion batteries (LIBs) has been extensively studied, with most research focused on the anode, because of its significant impact on the prolonged cycle life, initial capacity loss, and safety issues. Using first-principles density functional theory (DFT) calculations and <I>ab initio</I> molecular dynamics (AIMD) simulations with the Hubbard correction, we examine the thermodynamic structure prediction and electrochemical stability of a spinel LiMn2O4 cathode interfaced with a carbonate electrolyte. The electronic energy levels of frontier orbitals of the electrolyte and the work function of the cathode offer clear characterization of the interfacial reactions. Our results based on both DFT calculations and AIMD simulations propose that the proton transfer mechanism at the hybrid interface is essential for initiating the SEI layer formation on the LiMn2O4 surface. Our results can be useful for identifying design concepts in the development of stable and high capacity LIBs with optimized electrodes and high-performance electrolytes.</P>
      번역하기

      <P>The solid electrolyte interphase (SEI) of Li-ion batteries (LIBs) has been extensively studied, with most research focused on the anode, because of its significant impact on the prolonged cycle life, initial capacity loss, and safety issues. ...

      <P>The solid electrolyte interphase (SEI) of Li-ion batteries (LIBs) has been extensively studied, with most research focused on the anode, because of its significant impact on the prolonged cycle life, initial capacity loss, and safety issues. Using first-principles density functional theory (DFT) calculations and <I>ab initio</I> molecular dynamics (AIMD) simulations with the Hubbard correction, we examine the thermodynamic structure prediction and electrochemical stability of a spinel LiMn2O4 cathode interfaced with a carbonate electrolyte. The electronic energy levels of frontier orbitals of the electrolyte and the work function of the cathode offer clear characterization of the interfacial reactions. Our results based on both DFT calculations and AIMD simulations propose that the proton transfer mechanism at the hybrid interface is essential for initiating the SEI layer formation on the LiMn2O4 surface. Our results can be useful for identifying design concepts in the development of stable and high capacity LIBs with optimized electrodes and high-performance electrolytes.</P>

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼