RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      D2MR: 머신러닝 시스템에서 데이터 특성 기반의 규칙 매핑을 통한 드리프트 탐지 기법 추천 프레임워크 = D2MR: A Framework for Recommending Drift Detection Method via Data Characteristic-based Rule Mapping in Machine Learning System

      한글로보기

      https://www.riss.kr/link?id=A109938393

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract) kakao i 다국어 번역

      Machine learning systems often suffer from performance degradation and reduced model reliability due to data distribution shifts (drift) that occur over time. Although various drift detection methods have been studied to address this issue, selecting a method that is well-suited to the characteristics of real-world datasets remains challenging. This study proposes the D2MR(Drift Detection Method Recommender) framework, which automatically recommends suitable detection methods based on dataset meta-features such as label availability, data type, size, dimensionality, distance computability, and distribution type. The proposed framework systematically maps data characteristics to detection methods and can be effectively integrated into drift monitoring modules of machine learning systems. Finally, the effectiveness of D2MR is validated through case studies using the CIFAR-10 image dataset and the UCI Wine Quality dataset.
      번역하기

      Machine learning systems often suffer from performance degradation and reduced model reliability due to data distribution shifts (drift) that occur over time. Although various drift detection methods have been studied to address this issue, selecting ...

      Machine learning systems often suffer from performance degradation and reduced model reliability due to data distribution shifts (drift) that occur over time. Although various drift detection methods have been studied to address this issue, selecting a method that is well-suited to the characteristics of real-world datasets remains challenging. This study proposes the D2MR(Drift Detection Method Recommender) framework, which automatically recommends suitable detection methods based on dataset meta-features such as label availability, data type, size, dimensionality, distance computability, and distribution type. The proposed framework systematically maps data characteristics to detection methods and can be effectively integrated into drift monitoring modules of machine learning systems. Finally, the effectiveness of D2MR is validated through case studies using the CIFAR-10 image dataset and the UCI Wine Quality dataset.

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼