RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      On singular integral operators involving power nonlinearity

      한글로보기

      https://www.riss.kr/link?id=A104896372

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract) kakao i 다국어 번역

      In the current manuscript, we investigate the pointwise convergence of the singular integral operators involving power nonlinearity given in the following form: \begin{equation*} T_{\lambda }(f;x)=\int \limits_{a}^{b}\sum \limits_{m=1}^{n}f^{m}(t)K_{\lambda ,m}(x,t)dt,\text{ }\lambda \in \Lambda ,\text{ }x\in \left( a,b\right) , \end{equation*} where $\Lambda $ is an index set consisting of the non-negative real numbers, and $n\geq 1$ is a finite natural number, at $\mu -$generalized Lebesgue points of integrable function $f$ $\in L_{1}\left( a,b\right) .$ Here, $f^{m}$ denotes $m-th$ power of the function $f$ and $\left( a,b\right)$ stands for arbitrary bounded interval in $ \mathbb{R} $ or $\mathbb{R}$ itself. We also handled the indicated problem under the assumption $f$ $\in L_{1}\left( \mathbb{R}\right) .$
      번역하기

      In the current manuscript, we investigate the pointwise convergence of the singular integral operators involving power nonlinearity given in the following form: \begin{equation*} T_{\lambda }(f;x)=\int \limits_{a}^{b}\sum \limits_{m=1}^{n}f^{m}(t)K_{\...

      In the current manuscript, we investigate the pointwise convergence of the singular integral operators involving power nonlinearity given in the following form: \begin{equation*} T_{\lambda }(f;x)=\int \limits_{a}^{b}\sum \limits_{m=1}^{n}f^{m}(t)K_{\lambda ,m}(x,t)dt,\text{ }\lambda \in \Lambda ,\text{ }x\in \left( a,b\right) , \end{equation*} where $\Lambda $ is an index set consisting of the non-negative real numbers, and $n\geq 1$ is a finite natural number, at $\mu -$generalized Lebesgue points of integrable function $f$ $\in L_{1}\left( a,b\right) .$ Here, $f^{m}$ denotes $m-th$ power of the function $f$ and $\left( a,b\right)$ stands for arbitrary bounded interval in $ \mathbb{R} $ or $\mathbb{R}$ itself. We also handled the indicated problem under the assumption $f$ $\in L_{1}\left( \mathbb{R}\right) .$

      더보기

      참고문헌 (Reference)

      1 A. D. Gadjiev, "The order of convergence of singular integrals which depend on two parameters, Special Problems of Functional Analysis and their Appl. to the Theory of Diff. Eq. and the Theory of Func."

      2 R. Taberski, "Singular integrals depending on two parameters" 7 : 173-179, 1962

      3 R. G. Mamedov, "On the order of convergence of m-singular integrals at gener-alized Lebesgue points and in the space Lp( 1;1)" 27 (27): 287-304, 1963

      4 J. Musielak, "On some approximation problems in modular spaces" Publ. House Bulgarian Acad. Sci., Sofia 455-461, 1981

      5 A. D. Gadjiev, "On nearness to zero of a family of nonlinear integral operators of Hammerstein, Izv. Akad. Nauk Azerbadzan" 2 : 32-34, 1966

      6 H. Karsli, "On convergence of convolution type singular integral operators depending on two parameters" 38 : 25-39, 2007

      7 C. Bardaro, "On approximation properties of certain nonconvolution integral operators" 62 (62): 358-371, 1990

      8 S. E. Almali, "On approximation properties of certain multidi-mensional nonlinear integrals" 9 (9): 3090-3097, 2016

      9 C. Bardaro, "On approximation properties for some classes of linear operators of convolution type" 33 (33): 329-356, 1984

      10 S. E. Almali, "On approximation properties for non-linear integral operators" 5 (5): 123-129, 2017

      1 A. D. Gadjiev, "The order of convergence of singular integrals which depend on two parameters, Special Problems of Functional Analysis and their Appl. to the Theory of Diff. Eq. and the Theory of Func."

      2 R. Taberski, "Singular integrals depending on two parameters" 7 : 173-179, 1962

      3 R. G. Mamedov, "On the order of convergence of m-singular integrals at gener-alized Lebesgue points and in the space Lp( 1;1)" 27 (27): 287-304, 1963

      4 J. Musielak, "On some approximation problems in modular spaces" Publ. House Bulgarian Acad. Sci., Sofia 455-461, 1981

      5 A. D. Gadjiev, "On nearness to zero of a family of nonlinear integral operators of Hammerstein, Izv. Akad. Nauk Azerbadzan" 2 : 32-34, 1966

      6 H. Karsli, "On convergence of convolution type singular integral operators depending on two parameters" 38 : 25-39, 2007

      7 C. Bardaro, "On approximation properties of certain nonconvolution integral operators" 62 (62): 358-371, 1990

      8 S. E. Almali, "On approximation properties of certain multidi-mensional nonlinear integrals" 9 (9): 3090-3097, 2016

      9 C. Bardaro, "On approximation properties for some classes of linear operators of convolution type" 33 (33): 329-356, 1984

      10 S. E. Almali, "On approximation properties for non-linear integral operators" 5 (5): 123-129, 2017

      11 T. Swiderski, "Nonlinear singular integrals depending on two parameters" 40 : 181-189, 2000

      12 C. Bardaro, "Nonlinear Integral Operators and Appli-cations" Walter de Gruyter & Co. 2003

      13 P. L. Butzer, "Fourier Analysis and Approximation, vol. I" Academic Press 1971

      14 R. Taberski, "Exponential approximation on the real line, Approximation and function spaces (Warsaw, 1986)" 22 : 449-464, 1989

      15 M. D. Spivak, "Calculus" Publish or Perish, Inc 1994

      16 B. Rydzewska, "Approximation des fonctions par des int e grales singuli eres ordi-naires" 7 : 71-81, 1973

      17 J. Musielak, "Approximation by nonlinear singular integral operators in general-ized Orlicz spaces" 31 : 79-88, 1991

      18 C. Bardaro, "Approximation by nonlinear integral op-erators in some modular function spaces" 63 (63): 73-182, 1996

      19 Gumrah Uysal, "A generic research on nonlinear non-convolution type singular integral operators" 강원경기수학회 24 (24): 545-565, 2016

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2027 평가예정 재인증평가 신청대상 (재인증)
      2021-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2018-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2015-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2011-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2010-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2009-01-01 평가 등재후보 1차 FAIL (등재후보1차) KCI등재후보
      2008-02-21 학술지명변경 한글명 : 강원경기수학회지 -> 한국수학논문집 KCI등재후보
      2008-01-22 학술지명변경 외국어명 : KANGWEON-KYUNGKI MATHEMATICAL JOURNAL -> Korean Journal of Mathematics KCI등재후보
      2007-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.08 0.08 0.07
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.06 0.05 0.267 0.02
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼