RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      최대우도법을 이용한 라이다 포인트군집의 박스특징 추정 = Box Feature Estimation from LiDAR Point Cluster using Maximum Likelihood Method

      한글로보기

      https://www.riss.kr/link?id=A108044798

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      This paper present box feature estimation from LiDAR point cluster using maximum likelihood Method. Previous LiDAR tracking method for autonomous driving shows high accuracy about velocity and heading of point cluster. However, Assuming the average position of a point cluster as the vehicle position has a lower accuracy than ground truth. Therefore, the box feature estimation algorithm to improve position accuracy of autonomous driving perception consists of two procedures. Firstly, proposed algorithm calculates vehicle candidate position based on relative position of point cluster. Secondly, to reflect the features of the point cluster in estimation, the likelihood of the particle scattered around the candidate position is used. The proposed estimation method has been implemented in robot operating system (ROS) environment, and investigated via simulation and actual vehicle test. The test result show that proposed cluster position estimation enhances perception and path planning performance in autonomous driving.
      번역하기

      This paper present box feature estimation from LiDAR point cluster using maximum likelihood Method. Previous LiDAR tracking method for autonomous driving shows high accuracy about velocity and heading of point cluster. However, Assuming the average po...

      This paper present box feature estimation from LiDAR point cluster using maximum likelihood Method. Previous LiDAR tracking method for autonomous driving shows high accuracy about velocity and heading of point cluster. However, Assuming the average position of a point cluster as the vehicle position has a lower accuracy than ground truth. Therefore, the box feature estimation algorithm to improve position accuracy of autonomous driving perception consists of two procedures. Firstly, proposed algorithm calculates vehicle candidate position based on relative position of point cluster. Secondly, to reflect the features of the point cluster in estimation, the likelihood of the particle scattered around the candidate position is used. The proposed estimation method has been implemented in robot operating system (ROS) environment, and investigated via simulation and actual vehicle test. The test result show that proposed cluster position estimation enhances perception and path planning performance in autonomous driving.

      더보기

      참고문헌 (Reference)

      1 이호준, "라이다를 이용한 이동 차량 검출을 위한 바운딩 박스와 가상 광선에 의한 주변 차량 형상 추출" 2018

      2 Quigley, Morgan, "ROS: an open- source Robot Operating System" 3 (3): 2009

      3 H. Lee, "Moving Object Detection and Tracking Based on Interaction of Static Obstacle Map and Geometric Model-Free Approach for Urban Autonomous Driving" 2020

      4 Roy L. Streit, "Maximum likelihood method for probabilistic multihypothesis tracking" 2235 : 1994

      5 Neubeck, Alexander, "Efficient non-maximum suppression" IEEE 3 : 2006

      6 Najibi, M, "Dops: Learning to detect 3d objects and predict An LSTM Approach to Temporal 3D Object Detection in Point Clouds" 2020

      1 이호준, "라이다를 이용한 이동 차량 검출을 위한 바운딩 박스와 가상 광선에 의한 주변 차량 형상 추출" 2018

      2 Quigley, Morgan, "ROS: an open- source Robot Operating System" 3 (3): 2009

      3 H. Lee, "Moving Object Detection and Tracking Based on Interaction of Static Obstacle Map and Geometric Model-Free Approach for Urban Autonomous Driving" 2020

      4 Roy L. Streit, "Maximum likelihood method for probabilistic multihypothesis tracking" 2235 : 1994

      5 Neubeck, Alexander, "Efficient non-maximum suppression" IEEE 3 : 2006

      6 Najibi, M, "Dops: Learning to detect 3d objects and predict An LSTM Approach to Temporal 3D Object Detection in Point Clouds" 2020

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2022 평가예정 재인증평가 신청대상 (재인증)
      2019-01-01 평가 등재학술지 선정 (계속평가) KCI등재
      2017-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼