RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      역동기하 환경에서 “끌기(dragging)”의 역할에 대한 고찰 = Review of the Role of Dragging in Dynamic Geometry Environments

      한글로보기

      https://www.riss.kr/link?id=A104781914

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      The purpose of this study is to review the role of dragging in dynamic geometry environments. Dragging is a kind of dynamic representations that dynamically change geometric figures and enable to search invariances of figures and relationships among them. In this study dragging in dynamic geometry environments is divided by three perspectives: dynamic representations, instrumented actions, and affordance. Following this review, six conclusions are suggested for future research and for teaching and learning geometry in school geometry as well: students’ epistemological change of basic geometry concepts by dragging, the possibilities to converting paper-and-pencil geometry into experimental mathematics, the role of dragging between conjecturing and proving, geometry learning process according to the instrumental genesis perspective, patterns of communication or discourse generated by dragging, and the role of measuring function as an affordance of DGS.
      번역하기

      The purpose of this study is to review the role of dragging in dynamic geometry environments. Dragging is a kind of dynamic representations that dynamically change geometric figures and enable to search invariances of figures and relationships among t...

      The purpose of this study is to review the role of dragging in dynamic geometry environments. Dragging is a kind of dynamic representations that dynamically change geometric figures and enable to search invariances of figures and relationships among them. In this study dragging in dynamic geometry environments is divided by three perspectives: dynamic representations, instrumented actions, and affordance. Following this review, six conclusions are suggested for future research and for teaching and learning geometry in school geometry as well: students’ epistemological change of basic geometry concepts by dragging, the possibilities to converting paper-and-pencil geometry into experimental mathematics, the role of dragging between conjecturing and proving, geometry learning process according to the instrumental genesis perspective, patterns of communication or discourse generated by dragging, and the role of measuring function as an affordance of DGS.

      더보기

      국문 초록 (Abstract)

      본 연구는 역동기하 환경에서 “끌기”의 역할을 고찰하고자 한다. 끌기는 도형을 역동적으로 변화시키면서 기하 도형의 숨겨진 성질과 이들 사이의 관계를 나타내는 불변성을 탐색 가능하게 하는 중요한 역할을 한다. 따라서 본 연구는 선행 연구의 분석을 통해 역동기하 환경에서 끌기의 사용이 세 가지 관점으로, 즉 역동적 표상, 도구유발행위, 그리고 어포던스로 구분될 수 있다는 결론을 도출하였다. 본 연구에서는 끌기의 사용에 대한 이들 각각의 관점을 선행 연구를 중심으로 살펴보았다. 그리고 이로부터 (1) 연역적, 공리적, 형식적 지필기하를 실험수학으로 접근할 수 있게 하는 끌기의 가능성 탐구, (2) 추측과 증명 사이에서 끌기의 유형에 따른 작용 분석, (3) 학생과 DGS 사이의 도구발생 과정에 따른 기하 학습의 차이 분석, (4) 끌기에 의한 의사소통이나 담화 유형의 분석, (5) 어포던스로서 끌기에 의해 수반되는 측정 기능의 역할 분석, 그리고 (6) 끌기에 의한 기하 개념의 정의에 대한 학생들의 인식론적 변화를 기하의 교수-학습과 후속 연구를 위한 제언으로 제시하고 있다.
      번역하기

      본 연구는 역동기하 환경에서 “끌기”의 역할을 고찰하고자 한다. 끌기는 도형을 역동적으로 변화시키면서 기하 도형의 숨겨진 성질과 이들 사이의 관계를 나타내는 불변성을 탐색 가능하...

      본 연구는 역동기하 환경에서 “끌기”의 역할을 고찰하고자 한다. 끌기는 도형을 역동적으로 변화시키면서 기하 도형의 숨겨진 성질과 이들 사이의 관계를 나타내는 불변성을 탐색 가능하게 하는 중요한 역할을 한다. 따라서 본 연구는 선행 연구의 분석을 통해 역동기하 환경에서 끌기의 사용이 세 가지 관점으로, 즉 역동적 표상, 도구유발행위, 그리고 어포던스로 구분될 수 있다는 결론을 도출하였다. 본 연구에서는 끌기의 사용에 대한 이들 각각의 관점을 선행 연구를 중심으로 살펴보았다. 그리고 이로부터 (1) 연역적, 공리적, 형식적 지필기하를 실험수학으로 접근할 수 있게 하는 끌기의 가능성 탐구, (2) 추측과 증명 사이에서 끌기의 유형에 따른 작용 분석, (3) 학생과 DGS 사이의 도구발생 과정에 따른 기하 학습의 차이 분석, (4) 끌기에 의한 의사소통이나 담화 유형의 분석, (5) 어포던스로서 끌기에 의해 수반되는 측정 기능의 역할 분석, 그리고 (6) 끌기에 의한 기하 개념의 정의에 대한 학생들의 인식론적 변화를 기하의 교수-학습과 후속 연구를 위한 제언으로 제시하고 있다.

      더보기

      참고문헌 (Reference)

      1 이태연, "어포던스 이론의 본질과 디자인적용에 관한 연구" 한국공간디자인학회 5 (5): 69-78, 2010

      2 위키백과, "어포던스" 위키백과 2013

      3 나은영, "소셜 미디어" 커뮤니케이션북스 85-111, 2012

      4 김정오, "감각과 지각" 시그마프레스 2007

      5 Reed, S. K., "Word problems: Research and curriculum reform" Lawrence Erlbaum 1999

      6 Goldenberg, E. P., "What lies behind dynamic interactive geometry software? In, In Research on technology and the teaching and learning of mathematics: Vol. 2 cases and perspective" Information Age Publishing 53-87, 2008

      7 Goldenberg, E. P., "What is dynamic geometry?, In Designing learning environments for developing understanding of geometry and space" Lawrence Erlbaum 351-368, 1998

      8 Hölzl, R., "Using dynamic geometry software to add contrast to geometric situations: A case study" 6 (6): 63-86, 2001

      9 Hollebrands, K. F., "The role of a dynamic software program for geometry in the strategies high school mathematics students employ" 38 (38): 164-192, 2007

      10 Laborde, C., "The hidden role of diagrams in students’ construction of meaning in geometry, In Meaning of mathematics education" Springer 159-, 2005

      1 이태연, "어포던스 이론의 본질과 디자인적용에 관한 연구" 한국공간디자인학회 5 (5): 69-78, 2010

      2 위키백과, "어포던스" 위키백과 2013

      3 나은영, "소셜 미디어" 커뮤니케이션북스 85-111, 2012

      4 김정오, "감각과 지각" 시그마프레스 2007

      5 Reed, S. K., "Word problems: Research and curriculum reform" Lawrence Erlbaum 1999

      6 Goldenberg, E. P., "What lies behind dynamic interactive geometry software? In, In Research on technology and the teaching and learning of mathematics: Vol. 2 cases and perspective" Information Age Publishing 53-87, 2008

      7 Goldenberg, E. P., "What is dynamic geometry?, In Designing learning environments for developing understanding of geometry and space" Lawrence Erlbaum 351-368, 1998

      8 Hölzl, R., "Using dynamic geometry software to add contrast to geometric situations: A case study" 6 (6): 63-86, 2001

      9 Hollebrands, K. F., "The role of a dynamic software program for geometry in the strategies high school mathematics students employ" 38 (38): 164-192, 2007

      10 Laborde, C., "The hidden role of diagrams in students’ construction of meaning in geometry, In Meaning of mathematics education" Springer 159-, 2005

      11 Laborde, C., "The development of a dynamical geometry environment, In Research on technology and the teaching and learning of mathematics: Vol. 2 Cases and perspectives" Information Age Publishing 31-52, 2008

      12 Laborde, C., "The computer as part of the learning environment: The case of geometry, In Learning from computers: Mathematics education and technology" Springer Verlag 48-67, 1993

      13 Laborde, C., "Teaching and learning geometry with technology, In Handbook of research on the psychology of mathematics education: Past, present and future" Sense Publishers 275-273, 2006

      14 Moreno-Armella, L., "Symbols and mediation in mathematics education, In Theories of mathematics education: Seeking new frontiers" Springer 213-232, 2010

      15 Santos, M., "Students’ use of technology in mathematical problems solving: Transforming technological artifacts into mathematical tools" The University of Hawaii 4 : 119-126, 2003

      16 Patsiomitou, S., "Secondary students’ “dynamic reinvention of geometric proof” through the utilization of linking visual active representations" 5 : 43-56, 2010

      17 Goldenberg, E. P., "Ruminations about dynamic imagery (and a strong plea for research), In Exploiting mental imagery with computers in mathematics education" Springer-Verlag 202-224, 1995

      18 Burger, W. F., "Restructuring geometry, In Research ideas for the classroom: High school mathematics" Macmillan Publishing Company 140-154, 1993

      19 Lesh, R., "Representations and translations among representations in mathematics learning and problem solving, In Problems of representation in the teaching and learning mathematics" Lawrence Erlbaum Associates 33-40, 1989

      20 Lesh, R., "Rational number relations and proportions, In Problems of representation in the teaching and learning mathematics" Lawrence Erlbaum Associates 41-, 1987

      21 Jones, K., "Providing a foundation for deductive reasoning: Students’ interpretations when using dynamic geometry software and their evolving mathematical explanations" 44 : 55-85, 2000

      22 Diezmann, C., "Primary students’ knowledge of the properties of spatially-oriented diagrams" PME 2 : 281-288, 2005

      23 Vygotsky, L. S., "Mind in society: The development of higher psychological processes" Harvard University Press 1978

      24 Hershkowitz, R., "Mathematics curriculum development for computerized environments: A designer-researcher-teacher-learner activity, In Handbook of international research in mathematics education" Lawrence Erlbaum 657-694, 2002

      25 Borwein, J., "Mathematics by experiment" A K Peters 2008

      26 Olive, J., "Mathematical knowledge and practices resulting from access to digital technologies, In Mathematics education and technology-rethinking the terrain" Springer 133-177, 2010

      27 Meira, L., "Making sense of instructional devices: The emergence of transparency in mathematical activity" 29 (29): 121-142, 1998

      28 Lehrer, R., "Longitudinal study of children’s reasoning about space and geometry, In Designing learning environments for developing understanding of geometry and space" Lawrence Erlbaum 137-168, 1998

      29 Clements, D. H., "Learning and teaching geometry with computers in the elementary and middle school, In Research on technology and the teaching and learning of mathematics: Vol. 1 Research syntheses" Information Age Publishing, Inc 109-154, 2008

      30 Parzysz, B., "Knowing vs. seeing : Problems of the plane representation of space geometry figures" 19 : 79-92, 1988

      31 Mariotti, M. A., "Introduction to proof: The mediation of a dynamic software environment" 44 : 25-53, 2000

      32 Tall, D. O., "Interrelationships between mind and computer: Processes, images, symbols, In Advanced technologies in the teaching of mathematics and science" Springer-Verlag 385-413, 1993

      33 Drijvers, P., "Integrating technology into mathematics education: Theoretical perspectives, In Mathematics education and technology-rethinking the terrain" Springer 89-132, 2010

      34 Olive, J., "Implications of using dynamic geometry technology for teaching and learning" 2000

      35 Hölzl, R., "How does ‘dragging’ affect the learning of geometry" 1 (1): 169-187, 1996

      36 Duval, R., "Geometrical pictures: Kinds of representation and specific processings, In Exploiting mental imagery with computers in mathematics education" Springer-Verlag 142-147, 1995

      37 Mason, J., "Fundamental constructs in mathematics education" Routledge Falmer 2004

      38 Drijvers, P., "From artifacts to instruments: A theoretical framework behind the orchestra metaphor, In Research on technology and the teaching and learning of mathematics: Vol. 2. cases and perspectives" Information Age Publishing 363-, 2008

      39 Hoyles, C., "Exploratory software, exploratory cultures?, In Computers and exploratory learning" Springer 199-219, 1995

      40 Laborde, C., "Designing tasks for learning geometry in computer-based environments, In Technology in mathematics teaching: A bridge between teaching and learning" Chartwell-Bratt 35-68, 1995

      41 Olivero, F., "Cabri-Geometre as mediator in the process of transition to proofs in open geometric situations: An exploratory study" 1-15, 1999

      42 Zazkis, R., "Attending to transparent features of opaque representations of natural numbers, In The role of representation in school mathematics: 2001 Yearbook of the National Council of Teachers of Mathematics" National Council of Teachers of Mathematics 146-141, 2001

      43 Rivera, F. D., "An anthropological account of the emergence of mathematical proof and related processes in technology-based environments, In Technology- supported mathematics learning environments: Sixty-seventh yearbook" National Council of Teachers of Mathematics 125-136, 2005

      44 Balacheff, N., "Advanced educational technology: Knowledge revisited, In Advanced educational technology: Research issues and future potential (NATO ASI Series Vol. 145" Springer 1-20, 1996

      45 Arzarello, F., "A model for analysing the transition to formal proofs in geometry" PME 2 : 32-39, 1998

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2026 평가예정 재인증평가 신청대상 (재인증)
      2020-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2017-01-01 평가 등재학술지 유지 (계속평가) KCI등재
      2013-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2005-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2004-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2002-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.91 0.91 1.13
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      1.05 1.03 1.504 0.27
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼