RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCOPUS

      셀룰로오스 나노섬유 제조용 국산 테일러 유동 나노분쇄기 개발 I - 파일럿 테일러 유동 나노분쇄기 성능 평가를 위한 효소 전처리 셀룰로오스 나노섬유의 제조 및 물성 평가 - = Development of Domestic Taylor-flow Nanogrinder for Manufacturing Cellulose Nanofiber I - Evaluation of the Physical Properties of Enzyme-Pretreated Cellulose Nanofiber for the Performance Evaluation of a Pilot Scale Taylor-flow Nanogrinder -

      한글로보기

      https://www.riss.kr/link?id=A108334140

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      In this study, we attempted to manufacture a pilot scale Taylor-flow nanogrinder (pilot nanogrinder) and evaluated its grinding efficiency by analyzing the characteristics of cellulose nanofiber (CNF). To prepare an enzyme-pretreated CNF (EN-CNF), softwood bleached kraft pulp (SwBKP) was grounded using the pilot nanogrinder after being pretreated with 1.0% of an endo-glucanase. EN-CNF was also prepared with the same pretreated SwBKP using an imported microgrinder as a control. Finally, their particle size, viscosity, and fiber width were determined.
      The enzyme effectively reduced the fiber length of SwBKP for producing EN-CNF using grinders due to the removal of amorphous regions and microfibrils from SwBKP. As the grinding time of the pilot nanogrinder increased, the particle size and fiber width of ENCNF decreased and the viscosity of EN-CNF increased. The imported grinder showed the same trends.Based on the fiber width of the EN-CNFs, the grinding efficiency of the pilot nanogrinder was 98% that of the imported microgrinder and improved significantly compared to the previous study. However, the pilot nanogrinder required more grinding time than the imported microgrinder for manufacturing the CNFs of similar size. Therefore, although the pilot grinder effectively produced CNF, it was also necessary to develop a technology that could accelerate the grinding process.
      번역하기

      In this study, we attempted to manufacture a pilot scale Taylor-flow nanogrinder (pilot nanogrinder) and evaluated its grinding efficiency by analyzing the characteristics of cellulose nanofiber (CNF). To prepare an enzyme-pretreated CNF (EN-CNF), sof...

      In this study, we attempted to manufacture a pilot scale Taylor-flow nanogrinder (pilot nanogrinder) and evaluated its grinding efficiency by analyzing the characteristics of cellulose nanofiber (CNF). To prepare an enzyme-pretreated CNF (EN-CNF), softwood bleached kraft pulp (SwBKP) was grounded using the pilot nanogrinder after being pretreated with 1.0% of an endo-glucanase. EN-CNF was also prepared with the same pretreated SwBKP using an imported microgrinder as a control. Finally, their particle size, viscosity, and fiber width were determined.
      The enzyme effectively reduced the fiber length of SwBKP for producing EN-CNF using grinders due to the removal of amorphous regions and microfibrils from SwBKP. As the grinding time of the pilot nanogrinder increased, the particle size and fiber width of ENCNF decreased and the viscosity of EN-CNF increased. The imported grinder showed the same trends.Based on the fiber width of the EN-CNFs, the grinding efficiency of the pilot nanogrinder was 98% that of the imported microgrinder and improved significantly compared to the previous study. However, the pilot nanogrinder required more grinding time than the imported microgrinder for manufacturing the CNFs of similar size. Therefore, although the pilot grinder effectively produced CNF, it was also necessary to develop a technology that could accelerate the grinding process.

      더보기

      참고문헌 (Reference)

      1 이연희 ; 이지영 ; 조해민 ; 박노성, "테일러 유동 나노 분쇄시스템 개발을 위한 프로토타입 분쇄기로 제조된 셀룰로오스 나노섬유의 품질 평가" 한국펄프·종이공학회 53 (53): 98-105, 2021

      2 조해민 ; 이연희 ; 김도훈 ; 이수현 ; 이지영, "음이온성과 양이온성 셀룰로오스 나노섬유를 이용한 수처리용 멤브레인 필터 개발" 한국펄프·종이공학회 53 (53): 61-68, 2021

      3 이지영 ; 김철환 ; 박태웅 ; 조해민 ; 김경민, "면섬유로 제조된 셀룰로오스 나노피브릴 적용에 따른특수지의 탈수성과 강도 변화" 한국펄프·종이공학회 50 (50): 68-76, 2018

      4 조해민 ; 이지영 ; 김수호 ; 이연희 ; 김철환, "감나무 부산물로부터 제조된 셀룰로오스 나노피브릴의 물성 평가" 한국펄프·종이공학회 52 (52): 79-87, 2020

      5 Park, S., "Surface and pore structure modification of cellulose fibers through cellulase treatment" 103 (103): 3833-3839, 2007

      6 Moser, C., "Specific surface area increase during cellulose nanofiber manufacturing related to energy input" 11 (11): 7124-7132, 2016

      7 Nazari, B., "Rheology of cellulose nanofibers suspensions : boundary driven flow" 60 (60): 1151-1159, 2016

      8 Eichhorn, S. J., "Review : current international research into cellulose nanofibres and nonocomposites" 45 : 1-33, 2010

      9 Djafari Petroudy, S. R., "Recent advances in cellulos nanofibers preparation through energy-efficient approaches : A review" 14 (14): 6792-, 2021

      10 Lamm, M. E., "Recent advanced in functional materials through cellulose nanofiber templating" 33 (33): 2005538-, 2021

      1 이연희 ; 이지영 ; 조해민 ; 박노성, "테일러 유동 나노 분쇄시스템 개발을 위한 프로토타입 분쇄기로 제조된 셀룰로오스 나노섬유의 품질 평가" 한국펄프·종이공학회 53 (53): 98-105, 2021

      2 조해민 ; 이연희 ; 김도훈 ; 이수현 ; 이지영, "음이온성과 양이온성 셀룰로오스 나노섬유를 이용한 수처리용 멤브레인 필터 개발" 한국펄프·종이공학회 53 (53): 61-68, 2021

      3 이지영 ; 김철환 ; 박태웅 ; 조해민 ; 김경민, "면섬유로 제조된 셀룰로오스 나노피브릴 적용에 따른특수지의 탈수성과 강도 변화" 한국펄프·종이공학회 50 (50): 68-76, 2018

      4 조해민 ; 이지영 ; 김수호 ; 이연희 ; 김철환, "감나무 부산물로부터 제조된 셀룰로오스 나노피브릴의 물성 평가" 한국펄프·종이공학회 52 (52): 79-87, 2020

      5 Park, S., "Surface and pore structure modification of cellulose fibers through cellulase treatment" 103 (103): 3833-3839, 2007

      6 Moser, C., "Specific surface area increase during cellulose nanofiber manufacturing related to energy input" 11 (11): 7124-7132, 2016

      7 Nazari, B., "Rheology of cellulose nanofibers suspensions : boundary driven flow" 60 (60): 1151-1159, 2016

      8 Eichhorn, S. J., "Review : current international research into cellulose nanofibres and nonocomposites" 45 : 1-33, 2010

      9 Djafari Petroudy, S. R., "Recent advances in cellulos nanofibers preparation through energy-efficient approaches : A review" 14 (14): 6792-, 2021

      10 Lamm, M. E., "Recent advanced in functional materials through cellulose nanofiber templating" 33 (33): 2005538-, 2021

      11 Nechyporchuk, O., "Production of cellulose nanofibrils : A review of recent advances" 93 (93): 2-25, 2016

      12 Khalil, H. A., "Production and modification of nanofibrillated cellulose using various mechanical processes : A review" 99 : 649-665, 2014

      13 Narayanan, L., "Nanocellulose market, by region"

      14 Siró, I., "Microfibrillated cellulose and new nanocomposite materials : a review" 17 : 459-494, 2010

      15 Cao, Y., "Effects of cellulase on the modification of cellulose" 337 (337): 1291-1296, 2002

      16 Moohan, J., "Cellulose nanofibers and other biopolymers for biomedical applications. a review" 10 (10): 65-, 2019

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼