RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      Harmony Search-based Hidden Markov Model Optimization for Online Classification of Single Trial EEGs during Motor Imagery Tasks

      한글로보기

      https://www.riss.kr/link?id=A104904757

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      This paper presents an improved method based on single trial EEG data for the online classification of motor imagery tasks for brain-computer interface (BCI) applications. The ultimate goal of this research is the development of a novel classification method that can be used to control an interactive robot agent platform via a BCI system. The proposed classification process is an adaptive learning method based on an optimization process of the hidden Markov model (HMM), which is, in turn, based on meta-heuristic algorithms. We utilize an optimized strategy for the HMM in the training phase of time-series EEG data during motor imagery-related mental tasks. However, this process raises important issues of model interpretation and complexity control. With these issues in mind, we explore the possibility of using a harmony search algorithm that is flexible and thus allows the elimination of tedious parameter assignment efforts to optimize the HMM parameter configuration. In this paper, we illustrate a sequential data analysis simulation, and we evaluate the optimized HMM. The performance results of the proposed BCI experiment show that the optimized HMM classifier is more capable of classifying EEG datasets than ordinary HMM during motor imagery tasks.
      번역하기

      This paper presents an improved method based on single trial EEG data for the online classification of motor imagery tasks for brain-computer interface (BCI) applications. The ultimate goal of this research is the development of a novel classification...

      This paper presents an improved method based on single trial EEG data for the online classification of motor imagery tasks for brain-computer interface (BCI) applications. The ultimate goal of this research is the development of a novel classification method that can be used to control an interactive robot agent platform via a BCI system. The proposed classification process is an adaptive learning method based on an optimization process of the hidden Markov model (HMM), which is, in turn, based on meta-heuristic algorithms. We utilize an optimized strategy for the HMM in the training phase of time-series EEG data during motor imagery-related mental tasks. However, this process raises important issues of model interpretation and complexity control. With these issues in mind, we explore the possibility of using a harmony search algorithm that is flexible and thus allows the elimination of tedious parameter assignment efforts to optimize the HMM parameter configuration. In this paper, we illustrate a sequential data analysis simulation, and we evaluate the optimized HMM. The performance results of the proposed BCI experiment show that the optimized HMM classifier is more capable of classifying EEG datasets than ordinary HMM during motor imagery tasks.

      더보기

      참고문헌 (Reference)

      1 K.-J. Won, "Training HMM Structure with genetic algorithm for biological sequence analysis" 20 (20): 3613-3619, 2004

      2 R. J. Frank, "Time series prediction and neural networks" 31 : 91-103, 2001

      3 B. Blankertz, "The non-invasive Berlin Brain-computer interface : fast acquisition of effective performance in untrained subject" 37 : 539-550, 2007

      4 염홍기, "Superiority Demonstration of Variance-Considered Machines by Comparing Error Rate with Support Vector Machines" 제어·로봇·시스템학회 9 (9): 595-600, 2011

      5 F. Lotte, "Regularizing common spatial patterns to improve BCI designs : unified theory and new algorithm" 58 (58): 355-362, 2011

      6 Z. W. Geem, "Parameter-settingfree harmony search algorithm" 217 (217): 3881-3889, 2010

      7 H. K. Lee, "PCA+HMM+SVM for EEG pattern classification" 1 : 541-544, 2003

      8 C. W. Chau, "Optimization of HMM by a genetic algorithm" 1727-1730, 1997

      9 A. Hyvärinen, "Independent component analysis of shorttime Fourier transform for spontaneous EEG/MEG analysis" 49 : 257-271, 2010

      10 B. Obermaier, "Hidden Markov models for online classification of single trial EEG data" 22 (22): 1299-1309, 2001

      1 K.-J. Won, "Training HMM Structure with genetic algorithm for biological sequence analysis" 20 (20): 3613-3619, 2004

      2 R. J. Frank, "Time series prediction and neural networks" 31 : 91-103, 2001

      3 B. Blankertz, "The non-invasive Berlin Brain-computer interface : fast acquisition of effective performance in untrained subject" 37 : 539-550, 2007

      4 염홍기, "Superiority Demonstration of Variance-Considered Machines by Comparing Error Rate with Support Vector Machines" 제어·로봇·시스템학회 9 (9): 595-600, 2011

      5 F. Lotte, "Regularizing common spatial patterns to improve BCI designs : unified theory and new algorithm" 58 (58): 355-362, 2011

      6 Z. W. Geem, "Parameter-settingfree harmony search algorithm" 217 (217): 3881-3889, 2010

      7 H. K. Lee, "PCA+HMM+SVM for EEG pattern classification" 1 : 541-544, 2003

      8 C. W. Chau, "Optimization of HMM by a genetic algorithm" 1727-1730, 1997

      9 A. Hyvärinen, "Independent component analysis of shorttime Fourier transform for spontaneous EEG/MEG analysis" 49 : 257-271, 2010

      10 B. Obermaier, "Hidden Markov models for online classification of single trial EEG data" 22 (22): 1299-1309, 2001

      11 L. R. Welch, "Hidden Markov models and the Baum-Welch algorithm" 53 (53): 10-13, 2003

      12 B. Cetisli, "Estimation of adaptive neuro-fuzzy inference system parameters with the expectation maximization algorithm and extended Kalman smoother" 20 (20): 403-415, 2011

      13 B. Cetisli, "Estimation of adaptive neuro-fuzzy inference system parameters with the expectation maximization algorithm and extended Kalman smoother" 20 (20): 403-415, 2011

      14 Y. Wang, "Design of electrode layout for motor imagery based braincomputer interface" 43 (43): 557-558, 2007

      15 Han Hu, "Constrained Markov Control Model and Online Stochastic Optimization Algorithm for Power Conservation in Multimedia Server Cluster Systems" 제어·로봇·시스템학회 10 (10): 1215-1224, 2012

      16 L. R. Rabiner, "A tutorial on hidden Markov models and selected applications in speech recognition" 77 : 257-286, 1989

      17 D. Coyle, "A time-series prediction approach for feature extraction in a Brain-Computer interface" 13 (13): 461-467, 2005

      18 F. Lotte, "A review of classification algorithms for EEG-based brain-computer interfaces" 4 : R1-R13, 2007

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-12-29 학회명변경 한글명 : 제어ㆍ로봇ㆍ시스템학회 -> 제어·로봇·시스템학회 KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2007-10-29 학회명변경 한글명 : 제어ㆍ자동화ㆍ시스템공학회 -> 제어ㆍ로봇ㆍ시스템학회
      영문명 : The Institute Of Control, Automation, And Systems Engineers, Korea -> Institute of Control, Robotics and Systems
      KCI등재
      2005-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2004-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2002-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 1.35 0.6 1.07
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.88 0.73 0.388 0.04
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼